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Abstract

Intelligent conversational systems - such as question answering and chatbots - are
becoming a more critical component of today’s AI in areas ranging from health, medicine,
and security, to personal assistants, and other domains.

In one way or another, the core of the design in such systems relies heavily on figur-
ing out the relationships between the different components of the specific domain. For
example, knowing that Tom Cruise has played in a movie called Top Gun would mean
that he is, also, one of the cast in that movie, and so on. This information, for instance,
constitutes that there is a relation between Tom Cruise and Top Gun movie.

Today, this relational knowledge is harvested and available in structured data form
known as Knowledge Graphs - collections of connected facts about the world. Knowledge
graphs comprise billions of facts collected by web-scale knowledge extraction projects
such as NELL, Free-Base, Google Vault, WikiData, and others. One problem is how to
enable computers to, efficiently, use such vast knowledge banks.

For intelligent systems to make use of this knowledge, knowledge graphs need to
be modeled (or represented) in a machine-comprehensible, meaningful, and processable
way. Knowledge Graph Embeddings “KGE” is a method for delivering such a meaning-
ful representation for relational knowledge. KGE is partially inspired by Neural Word
Embeddings - a recent widely successful approach for language modeling in Natural
Language Processing NLP.

However, existing KGE methods do not fully-leverage the core ideas behind word
embeddings. The Distributional Hypothesis is one of the main reasons word embeddings
work. This hypothesis states that words with similar meanings occur in similar contexts.
Such an essential notion is not accounted for “unconsidered” in the current knowledge
graph embedding approaches.

In this dissertation, we introduce a Context-Based Knowledge Graph Embeddings.
An approach for modeling knowledge graphs by leveraging the semantic similarities of
relationships between knowledge graphs triplets. In which we borrow the idea of “similar
words happen in similar contexts,” and apply it to the knowledge graphs triplets as
“similar relations happen in similar contexts.” Our approach is a hybrid of an existing
embedding method and the hypothesis mentioned above.

Further, we present our published experiments for learning and building embedding
models. Our validations show that a simple embedding model is capable of beating
state-of-the-art approaches that rely on hand-crafted features; in terms of capturing the
linguistic similarities and meanings.

Finally, we introduce our factoid-question answering algorithm that leverages the
embeddings of knowledge graphs for answering simple fact-based questions. NLP tech-
niques, such as Named Entity Recognition and Relation Extraction, are applied in which
we propose a new approach suited for knowledge base data structure. We built a web
application to demonstrate the efficiency of this algorithm. The app works with any
customized dataset. It is open-sourced and made available for general use.
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LIST OF FIGURES 1

NOTE: Despite the dissertation title, in our work, we put more emphasis and efforts

(i.e. our contribution is mostly) in the embedding part; which tackles the crux of the

relational knowledge representation problem.
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1 Introduction

I am convinced that the crux of the problem of learning is

recognizing relationships and being able to use them.

Christopher Strachey, in a letter to Alan Turin in 1954 [32].

In traditional search systems, e.g. search engines, search results are derived based on what the

searched term is, not what it means. Reliance on such symbolic representation is not future promis-

ing. Hence, modern search engines have been shifting search mechanism from the conventional

textual and rule-based approaches to more semantic and context-aware approaches. This shift can

transform search from a static information engine to a dynamic knowledge engine. Knowledge

Graphs (KGs), i.e. graph structured knowledge bases (KBs), are at the heart of such modern ap-

proach. Applications for KGs are utilized for improving the capability of knowledge representations

in knowledge inference, fusion, and completion. For instance, in KGs, entities (or objects1) are

connected to each other via relationships. By understanding the relationships between things–be

it between players and sports or diseases and symptoms–intelligent systems can do a better job of

understanding what it is exactly one is searching for [94].

Knowledge bases store factual information about the real-world in form of binary relations between

entities2. The purpose of KBs is to convey some commonsense knowledge about either everyday life

or expert knowledge about an application area to an artificial intelligence system [43]. This form of

knowledge representation plays a crucial role in many intelligent systems and search-based areas such

as search engines and medical-diagnosis applications. For example, improving search results with

semantic information from knowledge bases is an important step for transforming text-based search

engines into semantically aware question answering services [83]. Modeling the relationships between

entities allow computers to acquire new knowledge from existing examples, deduce conclusions based

on existing facts, formalize facts about objects, and/or understand how objects interact with each

other.

Many knowledge bases have been created in the past years, including Wordnet [72], GeneOntology

[31], DBpedia [14], YAGO [97], Freebase [22], NELL [28], Google Knowledge Graph [94], and most

recently Knowledge Vault [33]. Through time, KBs have accumulated and stored a large number of

facts about the world. These multi-relational data form directed graphs (of knowledge) whose nodes
1An object could be anything, e.g. a person, a book … etc.
2Relations in KBs are known as triplets.
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correspond to entities and edges correspond to relations between entities; see figure 1. Such graphs

play a pivotal role in many areas [24]. For example, they are used to enhance search engines results

(Google’s Knowledge Graph and Microsoft’s Satori). Decision support systems in healthcare, such

as LinkedLifeData [74], is another prominent example of the value of knowledge graphs.

Figure 1: Sample knowledge graph. Nodes represent entities, edge labels represent types of relations,
edges represent existing relationships [83].

However, as KBs grow it becomes hard to manipulate and handle these structured graphs. The

dimensionality of one knowledge base can grow to as large as 108 entities and 106 relation types

(e.g. Freebase contains 40M entities, 35K relations, 637M facts). Further, noisy data can be intro-

duced by wrong relations and entities. Also KBs are far from been complete, with many incomplete

facts or few valid links (e.g. in Freebase nationality for 71% of persons missing). This incompleteness

has stimulated research into predicting missing links, a prominent problem in statistical relational

learning known as “link prediction”. Tackling these issues is a key to automatically understand the

structure of large knowledge bases.

”Early AI systems sought to hard-code knowledge about the world

in formal languages.”

In [43], they explain how early artificial intelligence projects employ human experts to manually

encode knowledge into formal languages. A logic-reasoner program can reason about these formal

statements using inference rules. This is known as the rule-based approach to AI. In such systems,

people struggle to devise formal rules to accurately describe the world with minimum complexity.

As a result of this approach’s limitations (e.g. scalability, adaptivity, handling complexity), none of

these systems has led to a major success. Cyc3 project is one of the most famous examples of such

approach.

The difficulties resulted from hard-coding knowledge suggest that an intelligent system needs to be
3https://en.wikipedia.org/wiki/Cyc
4Image credit: [29]
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Figure 2: Machine learning: a programming paradigm that equips machines with the capability of
self-learning4.

capable of self-learning and be able to extract knowledge (and rules) from raw-data. This capability

is known as Machine Learning. A machine learning system is trained rather than explicitly pro-

grammed. Presented with many examples relevant to a certain task, it discovers statistical structure

in these examples which eventually allows the system to come up with rules pertaining that task

[29], see figure 2. And as such system would rely on a learning algorithm for getting trained; it turns

out that the performance of the learning algorithm depends heavily on the representation of the raw

data. In the context of this work, knowledge base triplets are the raw data.

Statistical semantics. In 1957, the English linguist John Firth proposed his now-popular notion

about the context-dependent nature of meaning [37]. His hypothesis, which later became the basis

of an entire research area called Distributional Semantics, suggests that words that are used and

occur in the same contexts tend to have similar meaning. In other words, similar words usually fall

under similar contexts. In linguistics, this is known as “Distributional Hypothesis”. This underlying

idea is at the heart of the recent neural word embedding models.

Word embeddings. Recently, deep learning5 have been very successful in tasks that require

understanding of natural language (i.e. in Language Modeling, Machine Translation, and Natural

Language Processing). The very reason behind that success is the use of neural embeddings (also

called distributed representations of words) to represent the semantic knowledge of individual words

and concepts. Neural embeddings refer to a class of word embedding methods that are based on

neural networks. Although such models have been around for more than a decade ago [19], they

had not become a major success until recently when they were efficiently designed (along with the

optimized training process) based on the assumption of distributional hypothesis [68]. Due to this

success in distributed representations of words, along with the followup work [71, 58, 84, 21, 52],

neural language modeling has emerged as the main spectrum for distributional semantic models.
5Deep learning is a special (subset) class of machine learning.
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Relation semantics. A natural next step, beyond representing the semantics of individual words, is

to model and represent the relations between these words and understand how words “semantically”

relate to one another. Thus, a current research frontier is to develop embeddings for relations between

words and facts. Search engines are already exploring this area; however much more remains to be

done to improve these advanced representations [43]. One example on how to make use of these

representations is to predict which triplets, in a knowledge base, are likely to be true [24, 82].

1.1 Motivation

”The connection is indispensable to the expression of thought.

Without the connection, we would not be able to express any

continuous thought, and we could only list a succession of images

and ideas isolated from each other and without any link between

them.”

[100]

One way people understand a written text is by identify the semantic relations which connects the

entities described in that text. Likewise, a system which aspires to human-like performance need

to have the capability to identify, and learn from, the semantic relations in the texts it processes.

Understanding even a simple sentence such as “Opportunity and Curiosity find similar rocks on Mars”

requires recognizing relations (rocks are located on Mars, singled by the word on) and drawing on

already known relations (Opportunity and Curiosity are instances of the class of Mars rovers) [77].

Recently, the natural language understanding community has shown a renewed interest in deeper

semantic analyses, among them automatic recognition of semantic relations between pairs of words.

Automatic recognition of semantic relations is an important task with many potential applications.

Some of these applications include but not limited to Question Answering, Semantic Network Con-

struction, Language Modeling, Machine Translation, Information Retrieval, Information Extraction,

Text Summarization, Paraphrasing, and Recognizing Textual Entailment.

An interesting research direction is determining how distributed representations can be trained

to capture the relations between entities. One way to make use of these advanced distributed

representations is to use them as features in semantic relation classification.
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1.2 Use Case

Web-scale Knowledge Bases (KBs) provide a structure representation of the world knowledge. How-

ever, as we discussed in the introduction 1, KBs are incomplete, noisy, and contain many missing

entries. This has stimulated research into finding new approaches to tackle such issues. Link pre-

diction task, a main problem in Statistical Relational Learning [39], is one way to address KBs

problems. The task of link prediction is regarded as a key for understanding the structure of large

knowledge bases [101].

Link Prediction Task. Link prediction refers to the task of predicting the existence of typed edges

in the graph (i.e. triplets). To some extent, link prediction is also considered as a standard metric

for evaluating the quality of KB representation models. In the context of KBs, link prediction is

known as knowledge base completion. For instance, consider the example KB fragment in figure 3

which contains an unknown (undefined) triplet. A KB representation model can use related facts to

predict (infer) incomplete or missing facts.

To put this into more context, lets consider the following scenario about an incorrect fact. Lets

assume an information extraction system returns an incorrect fact claiming that Lionel Messi’s

profession is actor. And just for the purpose of this illustration, lets also assume that the true

profession of Lionel Messi was not already stored in the knowledge base. A KB representation

model can use related facts about Messi, (such as the fact that he won ballon d’Or prize multiple

times) to infer that the new fact is unlikely to be true and should be discarded6. This also allows

us to automatically grow KB.

Figure 3: An example fragment of a KB.
6a modified example from [83]
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Link prediction using relation embeddings. Current state of the art approaches for KB com-

pletion are embedding-based models. In contrary to other models such as markov-based approaches,

embedding models generalize to large KBs. To do that such, entities and relation are embedded in

a dense .. …There have been multiple work in this area. Since a comprehensive literature review is

beyond the proposal’s scope, we focus only on work with most significant results, such work include

[80, 23, 24, 109, 82, 62, 79, 78, 38]. The quality of these methods’ embeddings is evaluated based

on their performance on link prediction task. In section 2.3, we discuss these methods and their

performance in greater details.

The recent success of word embeddings is attributed to two key components. First, the use of neural

language models NLMs (see section 2.2). Second, the idea of distributional semantic hypothesis (see

more about it in section 2.1) which is the underlying assumption for training word vectors using

NLMs.

What is the issue with current approaches? While current relation embeddings models are

already trained using NLMs, they do not actually assume distributional similarities over the relation

types of KBs triplets. Such lack of an underlying assumption for a semantic theory is a major theme

in current work. Therefore, we think that the shortcoming of current models is due to the lack

of a semantic theory underlying their training process; which in turn resulted in low accuracy and

performance.

Can we do better? Although there have been some progress made due to the fact of using NLMs,

the accuracy of current approaches is still far from being useful for real world applications, see tables

2, and 4. Hence, more work needed in order to improve these advanced representations.

Why distributional similarity is absent from the architecture of current relation em-

bedding models? In the case of word representations, it is obvious how distributional hypothesis

fits given the succession of words in a sentence or a corpus7. However, in the case of KB relation

representations, it is not apparent how the consecutiveness of words can be applied given the discrete

and independent nature of knowledge base triplets.

To tackle this problem, we propose to incorporate the distributional hypothesis assumption into the

training process, see figure 4. In order to do that, we treat triplets of knowledge bases just like words

in a corpus. Such that the relation type of a triplet is the link that connect triplets as a sequence.

To better understand this idea, refer to the detailed approach description in section 4.2.3.

7corpus is a large collection of written texts.
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Figure 4: In text representations, state of the art for modeling the semantics of words is a combination
of NLM and DH (at the top). On the other hand, current state-of-the-art for modeling the semantics
of relations does not incorporate DH. Inspired by NLM for word representations, our proposed
approach to relational representations extends current NLMs to account for distributional hypothesis.

1.3 Problem Statement

Neural Word Embeddings is a breakthrough in natural language processing. It has been proven

as the - currently - most efficient technique for capturing the semantic and syntactic similarities

between linguistic items. Applications such as web search systems rely massively on the semantic

interpretations of web content. In numerous situations, relational models have been proven to

improve the results of semantic search when relational information is available. While the accuracy

of those models is pivotal for subsequent tasks in semantic search engines, the performance of existing

relational learning models is still far from being useful to leverage in real-world applications.

We argue that the absence of a semantic theory in current relation embedding models has resulted in

low accuracy and, thus, incompetent performance of these models. As a result, current approaches

are unable to address representation issues in knowledge bases such as large dimensionality and

incompleteness.

Inspired by the success of neural word embeddings as an example, we believe that the way to improve

current relation embeddings is by integrating context similarity in the training process. Thus, the

goal in this dissertation work is to take full advantage of the distributional similarity theory in

order to improve the accuracy of relational knowledge representation models.
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1.3.1 Dissertation

Distributional Hypothesis is one of the core ideas/assumptions behind the recent Neural Word Em-

beddings. Its objective is to quantify and capture the semantic similarities between words. In this

dissertation, we borrow and apply the same hypothesis to build a representation model for Rela-

tional Knowledge data such as Knowledge Graphs. The goal is to build a relational embedding

model capable of capturing and representing the semantic similarities between relationships.

Below are the topics and methodology discussed and utilized in this dissertation (in the same work

order):

• Knowledge Representation

• Relational Data: Web Ontologies and Knowledge Base

• Semantic Web Tools and Technology

• Knowledge Graphs and Representation Learning

• Machine Learning, Natural Language Processing, and Neural Networks

• Distributional Semantic Theory and Neural Word Embeddings

• Question Answering Systems

– Named Entity Recognition “NER” and Entity Linking

– Relation Extraction

The dissertation statement can be summarized in the following paragraph:

Contributed to neural language models, the recent advancement in language modeling has

led to several successes in understanding natural language. Mainly based on embedding

methods, the architecture design of neural language models is based on the assumption

of the distributional semantics theory, also known as the “Distributional Hypothesis”.

This notion is absent from the current Knowledge Graphs Embeddings KGEs. We, thus,

believe that assuming distributional similarity between the Knowledge Graph relations

“triplets” can improve the current KGE methods.

Unlike existing work, the proposed approach leverages the principle of distributional hypothesis as

a solution for how distributed representations can be trained to capture relations between entities.

Figure 4 illustrates the distinction between the proposed approach and existing work.
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1.3.2 Contributions

The dissertation work and contributions in a nutshell include:

• Developed a Context-Based Embedding algorithm for training Knowledge Graphs to represent

entities and their relationships as Vector Space Model “VSM”

• Designed and implemented intrinsic and extrinsic evaluation methods to estimate the quality

of the embeddings

• Designed and implemented a novel framework for Fact-based question answering that lever-

age the embeddings of knowledge graphs (and demonstrate how to use them in a real-world

application)
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2 Background and Related Work

This chapter introduces the knowledge on which the dissertation work is based on. It is structured

into two parts. The first one (sections 2.1 and 2.2) introduces the general background and method-

ology behind the proposed work. In the second part (section 2.3) we discuss work and techniques

that are directly related to the problem of learning semantic relations.

When it comes to representing natural languages, the natural language processing community has

a tradition of thinking in terms of distributional semantics, while on the other hand, the neural

networks community has a tradition of thinking in terms of distributed representations [41]. In

first part of section 2.1 we explore the former, and in the second part of the same section we delve

in the latter approach. While, in section 2.2, we discuss neural language models where the two

worlds meet.

2.1 Distributional Semantics and Distributed Representations

Distributional semantics hypothesis

A human brain can easily identify and differentiate between different objects. It is even capable of

drawing a connection between two objects based on how they relate to each other. The way these

connections are formed is governed by the nature (meaning) of the target objects. For example, in

the simple sentence “The car’s engine is broken.” the brain can easily recognize the relationship

that “engine” is part of “car”. With many more related objects, the brain forms sort of relational

maps or networks of connected objects. The brain relies on these interconnected networks to reason

and draw conclusions about various decisions (problems). This phenomena mental capability of the

human brain is the result of accumulated knowledge learned throughout the human’s lifetime.

When reading a written text, the brain employs its magical ability to establish relationships between

words. Again, the meaning of a word is the main criteria for determining how a word connects

(relates) to other words. For example, these meanings (or semantics) are derived naturally via

a cognitive process happen in the brain8. This very particular cognitive ability is what we hope

computers to achieve.

Distributional semantics provide a way for quantifying the meaning of words. Thus, opening doors
8we do not actually understand much about how this process happen on an algorithmic level; computational

neuroscience is the primary field concerned with this endeavor.
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for a computer to capture and understand words meanings and, then, utilize this understanding to

establish connections (relations) between words on its own.

Distributional Hypothesis

”You shall know a word by the company it keeps.”

Firth, J. R. 1957

From a higher perspective, Distributional Hypothesis is a notion about the nature of language and

meaning. It was first hypothesized by [37] with a famous quote that states “You shall know a word

by the company it keeps”, figure 5. Often, it is expressed in terms such as “words that appear in

the same contexts share semantic meaning”; “words which are similar in meaning occur in similar

contexts” [87]. For instance, often when people encounter a sentence that has an unknown word,

they intuitively infer the meaning of the word based on the context in which it occurs. The word

wampinuk in Marco saw a hairy little wampinuk crouching behind a tree is an example of such cases

[41].

The basic idea of distributional hypothesis is that there is a correlation between distributional sim-

ilarity and semantic similarity. Consequently, we can utilize the former to quantify “estimate” the

latter. In meaning acquisition, the distributional properties of linguistic entities are treated as the

building blocks of semantics [89].

Figure 5: The surrounding words of the word banking can be used to infer its meaning. Distributional
similarity is regarded as one of the most successful ideas in modern statistical NLP9.

This basic idea is very pivotal to the development of semantic representations; which in turns allowed

researchers to develop machine-learnable semantic features.

Distributional similarities have been the driving factor behind the development of Vector Space

Models (VSMs) in natural language processing. VSMs embed words in a dense-continuous vector

space such that similar words are mapped to nearby points in the space10. Although computers

understanding for the meaning of human language is very limited, the use of VSMs for semantics
9Credit: Stanford’s cs224d (Socher, 2016)

10https://www.tensorflow.org/tutorials/word2vec



2.1 Distributional Semantics and Distributed Representations 13

processing is beginning to address that limitation [102].

There are two different categories of VSMs approaches that leverage the principle of distributional

hypothesis, 1) count-based methods, e.g. Latent Semantic Analysis “LSA”; and 2) predictive meth-

ods, e.g. neural probabilistic language models “NLMs”. An extensive evaluation about the two

categories and the distinction between them is discussed in details in [18]. The approach we follow

in this dissertation falls under the second category.

Distributed representations

One of the most important tools in representation learning is to represent concepts as a composition

of many elements that can be set separately i.e. “distributed representation”. Distributed represen-

tations strength lies in their capacity to describe (express) many different concepts in a minimal

shared space. For example, they can use n features with k values to describe kn distinct concepts.

Neural networks with multiple hidden layers make use of this strategy [43].

To put this idea into context, lets demonstrate it through an example. A vector of n binary features

can take 2n different configurations, where each can be mapped to a distinct concept and potentially

corresponds to a different region in the input space. In contrast, in one-hot11 representation (a.k.a

“symbolic representation” ) there could be only n possible configurations. Accordingly, symbolic

representations would require n feature detectors for every n input symbols. The sparsity of such

approach (one-hot) can easily suffers from the “curse of dimensionality” when the input symbols

are very large.

Distributed representation is superior to symbolic representation in its ability to generalize across

multiple sets of concept. Generalization arises due to shared attributes between different concepts.

To better explain this ability, lets look into the following case. Although the words "cat" and "dog"

appear different syntactically, they actually share some semantic similarities. So if one can associate

them with a meaningful distributed representation, many attributes about the cat can be said about

dog. Whereas in one-hot representations, it is not possible to express these similarities since words

are treated as discrete atomic symbols. This difference is better illustrated in 6. For a comprehensive

review on the symbolic vs. distributed representations and the key differences between them in the

context of NLP, see [36].

As we see in the figure 6, dense vector representations allow us to measure the similarity between
11one-hot is a binary vector with n bits that are mutually exclusive (only one active at a time).
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Figure 6: Hypothetical example to demonstrate how “dense-vector” distributed representations can
share attribute among different concepts, in compare to the “one-hot” sparse representations

dog and cat by applying, for instance, the cosine similarity similarity(vdog, vcat) = vdog·vcat

||vdog||·||vcat|| =

cos(ϕ), where the vector vw ∈ Rdw and ϕ is the angle between the two vectors. Therefore, distributed

representations induce a rich similarity space, in which semantically close concepts are close in

distance [43]. Because of this capacity (of distributed representations), Vector Space Models can

capture and represent the semantic features of concepts.

Now, the question is “how can one come up with such rich vector representations?”. The following

section describes the answer to this question in details.

2.2 Language Modeling and Relational Representation

Neural language modeling and word embedding

What is language modeling? The goal of a language model is to learn a probability distribution

over a sequence of words from a given dictionary V . The joint distribution of a sequence of tokens T

given their past is defined as the product of their conditional distribution [44]. That is for a sequence

of T words w1, . . . , wT ∈ V T , its probability distribution is given by:

P (w1, . . . , wT ) =
T∏

t=1
P (wt|wt−1, . . . , w1) (1)

Neural Language Models, on the other hand, (or NLMs) are a class of language models based on

neural networks which solve some of the shortcomings of traditional language models. Known as
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context-predicting models, NLMs were designed by [19] to reduce the impact of curse of dimension-

ality through exploiting their ability to learn distributed representations.

In predictive models, a word is predicted directly from its neighbors and take the form of learned

small, dense embedding vectors12 that are regarded as parameters of the model [1].

Class-based n-gram models (e.g. bag-of-words, and symbolic representation approaches in general)

are common for representing text features. However, they have two major shortcomings. They

ignore words’ semantics, and they fail at preserving the order of words [58].

On the other hand, NLMs are able to address both problems. Such that NLMs can recognize the

similarity between two words without losing the ability to encode each word as distinct from the

other. Further, NLMs share statistical strength between one word (and its context) and other similar

words and contexts. This sharing happens as follows. The model learns distributed representation

for each word; these representations then allow the model to treat words that have features in

common similarly. For instance, when the two words cat and dog each map to representations that

share multiple attributes, the model can then utilize sentences that contain the word dog to make

predictions in sentences that contain the word cat, and vice versa; see table 1. Because many such

attributes can exist, there are many ways in which generalization can take place, and transferring

information between semantically related training sentences [43].

Table 1: One can use intuition to easily guess some possible word(s) that can best complete the
sentence based on its context. Likewise, NLM exploit contexts similarity “Distributional Hypothesis”
to predict the correct word for any given training example.

Incomplete sentence Possible words
She traveled by ____. car, bus, plane

The capital of ____ is ____. (Japan, Tokyo), (Germany, Berlin)
The ____ has four legs. dog, horse, cat, elephant

Neural Model. Generally, a neural language model is exploited to obtain the joint probability

of sequences of words. Where the probability function is expressed in terms of the product of

conditional probabilities of the next word given the previous words [19]. This function has multiple

parameters that can be tuned to maximize the log-likelihood of the training data. Consider the

training set as a sequence w1 . . . wT of words such that wt ∈ V , and the vocabulary V is a large

but finite set. In [19], the objective of such model is to learn f(wt, . . . , wt−n+1) = P̂ (wt|wt−1
1 ).

Where they use softmax in the output layer to obtain positive probabilities that sum up to 1 i.e.
12It worth mentioning that using distributed representations in NLP is not, however, restricted to neural networks

only. Graphical models also have distributed representations in the form of multiple latent variables [73].
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P̂ (wt|wt−1
1 , . . . , wt−n+1) = eywt∑

i=1
eai

.

A general form for this model is described in [43] as follows. Suppose h is the final hidden layer

which is used to predict the output probability ŷ. The transformation from h to ŷ is parameterized

with weights W and biases b which are learned by the model.

ai = bi +
∑

j

Wijhj ∀i ∈ {1, . . . , |V |} (2)

The softmax function is then used as a standard map from RV to a probability distribution:

ŷi = eai∑|V |
j=1 eaj

(3)

Such that


eai Exponentiate to make positive
|V |∑
j=1

eaj Normalize the vector (
n∑

k=1

ŷk = 1) to give probability

This computation dominates most neural language models operations. The tricky part here is that

at the end of the training, we do not actually use the output of the network, instead what we care

about is the learned weights W . We will see in the next section that the projected weights matrix W

is actually nothing but the word vectors. In other words, each row (i.e. Wi where: i ∈ {1, . . . |V |})

is a vector representation of an input word.

Word Embeddings

The goal of word embeddings is to capture the semantic and lexical properties of words. This

happens by representing words as continuous vectors in a low dimensional space. Word vectors

can be obtained either from the internal representation (aka optimized weights) of neural networks

[19, 30, 68] or using low rank approximation of co-occurrence statistics [84]. Although it has been

shown that the two approaches are closely related [42, 49, 13], the neural networks approach is more

common and widely used.

Word2Vec

One of the most successful neural network language models was published under a software package

known as Word2vec [68, 71]. Word2vec is an algorithmic approach for estimating efficient word
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representations from a given corpus. The basic idea behind it is to design a model whose parameters

are the word vectors13. Where an objective function is used to iteratively train and evaluate the

model at each iteration. Errors evaluation and parameters update is carried out using the well

known Backpropagation algorithm.

Word2vec, however, is not a single algorithm. It is a package that comprises two different represen-

tations algorithms (Continuous-bag-of-words CBOW and skip-gram), and two different training

methods (Hierarchical softmax and Negative Sampling)14.

General learning model and objective function

Word vectors are learned by predicting the correct word/context in a sequence of words. Given a large

training corpus represented as a sequence of words w1, ..., wT , the objective is find the parameters

combinations θ that maximizes the log-likelihood:

J(θ) =
T∑

t=1

∑
c∈Ct

log p(wc|wt) (4)

where Ct is the set of indices of words surrounding wt, usually referred to as the context (or window)

of wt.

The probability of observing a context word wc given wt is parametrized using the word vectors.

Given a scoring functions, which maps pairs of (word, context) to scores in R, a possible choice to

define the probability of a context word is the softmax funciton [51].

More precisely, the probability of a surrounding context word wc given the center word wt is calcu-

lated using softmax function as follows:

p(wc|wt) = exp(wT
t .wc)∑

wi∈V exp(wT
t wi)

(5)

Where V is the vocabulary in our corpus. And w is the vector representation of a word. Note that

in the above softmax function it is computationally expensive to evaluate all wi ∈ V “i.e. compute

the conditional probabilities of all words” (cost is promotional to V ), therefore the hierarchical

softmax is used as an alternative to the full softmax. HS uses a binary tree representation, thus

it cuts the evaluation to log(V ). Similarly, Negative Sampling (or Noise Contrastive Estimation
13The terms word vectors, word embeddings, distributed representation of words, and neural word embeddings are

all refer to the same thing; so they are used interchangeably throughout this proposal writing.
14For more details on this see: Lecture 1 notes of Stanford’s course http://cs224n.stanford.edu
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NCE) is proposed as an alternative to hierarchical softmax.

Skip-gram: A Simple Worked Out Example. To demonstrate how skip-gram algorithm com-

putes the log-likelihood of the training data, we will walk through a toy example. For demonstration

purpose, we will assume a very tiny corpus, which has only one sentence and four vocabulary. Sup-

pose the training corpus contains the following text: “w1w2w3w4”. And we chose the window size to

be = 1 (also called context). The window means that for every target word, we take 2∗window_size

words as its context, one word from the back and one word from the front, see figure 7 below.

Figure 7: Skip-gram representations of training samples (at each training iteration) with a window
size = 1

Using the formula 4, the training objective is to maximize the sum of log probabilities for each word

w ∈ |V | and its contexts C as follows:

target = w1
log p(w2|w1) +

target = w2
log p(w1|w2) + log p(w3|w2) +

target = w3
log p(w2|w3) + log p(w4|w3) +

target = w4
log p(w3|w4)

and by substituting for p(wC |wt) with the (full) softmax function in 5, the expression above becomes:
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target = w1

log
exp(wT

1 w2)
normw1

+

target = w2

log
exp(wT

2 w1)
normw2

+ log
exp(wT

2 w3)
normw2

+

target = w3

log
exp(wT

3 w2)
normw3

+ log
exp(wT

3 w4)
normw3

+

target = w4

log
exp(wT

4 w3)
normw1

Where:

normw1 =
∑

wi∈V

exp(wT
1 wi) = exp(wT

1 w2) + exp(wT
1 w3) + exp(wT

1 w4)

normw2 =
∑

wi∈V

exp(wT
2 wi) = exp(wT

2 w1) + exp(wT
2 w3) + exp(wT

2 w4)

normw3 =
∑

wi∈V

exp(wT
3 wi) = exp(wT

3 w1) + exp(wT
3 w2) + exp(wT

3 w4)

normw4 =
∑

wi∈V

exp(wT
4 wi) = exp(wT

4 w1) + exp(wT
4 w2) + exp(wT

4 w3)

And:
wi = Ewi , E ∈ R|V |×dw

Note that the computation of the normwi is proportional to |V |. In practice, the size of V can be as

large as 105 − 107, therefore, it is often impractical to use the softmax. To address the cost of this

computation, two alternative optimization objectives (Hierarchical Softmax and Negative-Sampling)

were presented in [71].

Learning Relational Features

In machine learning, feature learning refers to the transformation of raw data input to a representa-

tion that can be effectively exploited in learning tasks. The choice of data representation can heavily

impact the performance of machine learning algorithms [20].

This section emphasizes the importance of data representation, and how it can affects an algorithm’s

ability to discover patterns in the input data. Followed by a discussion on the intuition behind

deriving relational features motivated by the principle of semantic theory of language.

Feature representation

The learning process in the brain is heavily dependent on its capacity to extract the right set of

features from the observed “perceived” world. Thus, the brain learns how to constitute patterns

driven by the features it extracts.
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Similarly, a learning algorithm learns through discovering patterns in data. To make that happen,

the learning algorithm remembers the representation (or features) of the data it processes. The

remembering here does not–necessarily–mean explicit memorization of the features. Instead, it is

more like gradually-increased confidence about the presence of a certain pattern in the data after a

repetitive encounter of the same feature in multiple examples (from the input data). The degree of

confidence can then be used to explain or to make judgement on new “un-seen” data; in machine

learning this process is known as generalization. Therefore, the better the features (representation

of data) the better the learning algorithm can perform and generalize.

In traditional machine learning algorithms, features are hand-designed (by-human)15. These features

are then fed into the model where it learns how to map these data representations to the output.

However, for many artificial intelligence tasks, it is difficult to tell what features should be extracted.

The goal of learning (or designing) features is to separate what is called the “factors of variation”

that explain the observed data. “Factors” refer to the separate sources of influences; often they have

no quantity that can be observed and they cannot be combined. For example, in speech recording

the factors are speaker’s age, sex, the words they are speaking; and in a car image, the factors are

the car’s position in the picture, its color, and the angle of sun brightness.

A major challenge in real-world AI applications is to disentangle these factors, thereafter discard

the unnecessary ones. The difficulty lies in that many factors can influence each single piece of the

observed data. In the context of the relational features, this challenge lies in the un-quantifiable

nature of the relations’ semantics.

One way to solve this problem is to use another machine learning algorithm to discover the represen-

tation itself. In deep learning, this approach is known as representation learning. Deep learning

solves that problem by expressing representations in term of other simpler ones, i.e. build complex

concepts from simpler ones. For example, the concept of a person’s image can be represented by

combining simpler concepts such as corners/contours which are in turn defined as edges.

As our target data in this dissertation is textual relational data (i.e. knowledge base triplets), we

exploit deep learning approaches to natural language to learn the semantic features of relations.

Namely, the approach is neural language models (described in section 2.2). Needless to say, rep-

resentation of text in general is very important for many real-world applications such as: search,

recommendations systems, ranking, spam filtering. In literature, there are different ways to represent
15The following passage is mostly summarized from [43], for in depth details refer to the book.
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text. The most common techniques as described in [70] include:

• Local representations

– N-grams

– Bag-of-words

– 1-of-N coding

• Continuous representations

– Latent Semantic Analysis

– Latent Dirichlet Allocation

– Distributed Representations

The approach we follow in this dissertation work, as discussed previously, is based on continuous

distributed representations.

2.3 Relational Embedding

The representation of raw data is pivotal for the performance of machine learning algorithms. Learn-

ing relational features (i.e. relationships between entities) is important for performing machine learn-

ing on multi-relational data such as knowledge graphs.

Relational machine learning studies the statistical properties of relational, or graph-structured, data.

Research in this area has been active for several years. In general, there are two classes of Statistical

Relational Learning (SRL) techniques. Those that uses latent variables to capture the correlation

between the nodes/edges, and those that rely on the observable properties of the graph to directly

capture the correlation. For an in depth discussion on the two techniques applied to knowledge

graphs, see [83].

Previously, traditional SRL approaches such as Markov Logic Networks [86] and relational Markov

Networks [99] have been dominant in the field. However, these conventional approaches suffer from

scalability issues as relational data grow in an unprecedented amount. This has motivated the

research community to focus on scalable SRL techniques.

Embedding-based methods have recently emerged as a promising alternative to the conventional

SRL. In embedding approaches, relational knowledge of entities and relations is encoded into low-

dimensional vector representations. These representations are the corner stone for improving learning

in relational models.
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We divided the related work on semantic relation embeddings into two categories, those which

develop a general-representational relational embeddings, and those of a task-specific relational

embeddings. We discuss each category in the following two subsections.

2.3.1 Embedding for relation representation

In the past few years, there have been several research dedicated for learning relational embeddings

from knowledge bases for the purpose of knowledge representation. We focus primarily on two of

the top state of the art methods TransE and HolE.

Translating Embeddings (TransE). One of the most notable work in this area was introduced

by [24]. In this model, a relation is represented as a translation vector r from the triplet (h, r, t)

such that h + r ≈ t figure 8. It predicts the existence of triplets from similarity of the embedding

space (each h, t ∈ E and r ∈ R has own vector). The assumption is as follows: if (h, r, t) holds, then

the embedding of the tail entity t should be close to the embedding of the head entity h plus some

vector that depends on the relationship r.

Figure 8: TransE represents a triplet relation r as a translation between head h and tail t in the
vector space. (image credit [104])

TransE learn embeddings (take values in Rk) of the entities and relationships by minimizing a ranking

loss function:

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

[γ + d(h + r, t)− d(h′ + r, t′)]+

where d is the dissimilarity measure taken using either the L1 or L2 norm; S′ is a corrupted triplet;

and [x]+ is the positive part of x or zero otherwise. To optimize this loss, the learning algorithm is

carried out using stochastic gradient descent with mini-batch mode.

In contrast to other methods, TransE is appealing due to the fact that it requires very few parameters

and very easy to train. However, TransE has some flaws when dealing with reflexive, 1-to-N, N-to-
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1, or N-to-N relations. Other work e.g. TransH and TransR have been proposed to improve the

performance of TransE in non-binary relations.

Holographic Embedding (HolE). A compositional representations of each triplet. In [82], they

employ a circular correlation operation to learn compositional representations of the entire knowledge

graph. The method is claimed to be related to the holographic models of associative memory, thus

the name Holographic Embeddings or “HolE”. To learn representations of entities and relations,

HolE model knowledge base triplets as follows:

Pr(ϕr(h, t) = 1|Θ) = σ(ηhrt) = σ(rT (h ◦ t))

Where ϕ is the characteristic function: E×E → {±1} which denotes the relation label (E is the set of

all entities). Positive indicates a true relation, i.e. the two pairs of entities {h, t} ∈ E are part of the

relation r, or negative otherwise. The set of all embeddings to be learned by the model is denoted

as Θ. σ is the logistic function, σ(x) = 1
1+exp(−x) . And ◦ denotes the compositional operator. It is

used to create a composite vector representation from h and t embeddings by performing a circular

correlation operation. The goal is to learn the representation of entities and relations Θ that best

explain the given triplets dataset D = {(xi, yi)}, i = 1 . . . N ; where xi ∈ R× E × E which denotes a

triplet, and yi ∈ ±1. The optimization is carried out by applying Stochastic Gradient Descent SGD

to minimize the the logistic loss

min
Θ

N∑
i

log(1 + exp(−yiηi))

Other work in literature include several approaches which are either variants of TransE or less

powerful than the two methods discussed above. Some of this work include STransE [79], TransR

[62], TransH [105], NTN [96] too many parameters and complex model, m-TransH [105] which

extends TransH to propose a new framework for multi-fold (or n-ary) relational data, PTransE [103],

[109] introduced a hybrid combination of NTN and TransE, SME (linear and bilinear) [23], and

finally RESCAL [81].

In Table 2 shows the performance of some of these methods for a link prediction task16.

16Some of the results and experiments are reported from the GitHub repository
https://github.com/thunlp/KB2E#evaluation-results
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Table 2: Accuracy of current state of the art on FB15k dataset (Raw).

Model MeanRank Hit@10
TransE 243 34.9
TransH 212 45.7
TransR 198 48.2
PTransE 216 47.4
RESCAL 828 28.4
SME-linear 273 28.8
SME-Bilinear 284 31

2.3.2 Embedding for relation classification

In this type of work, relational embeddings are developed specifically to tackle a task known as

relation classification. The task has been known for many years; and it was formally introduced for

research competitions in Task8 of SemEval-201017. It is focused on semantic relations between

two entities in a given sentence. The task is described as follows: given a sentence and two tagged

nominals, predict the type relation between those nominals and the direction of the relation [50].

The dataset used in this task is a widely used benchmark for relation classification. It contains 10,717

example sentences (8,000 training and 2,717 testing) annotated with 9 different relation types, with

an additional artificial relation labeled as Other, see table 3 for the complete list of types and their

frequencies in the data. As an example, the following sentence has a type Entity-Origin relation

between the nominals “tea” and “ginseng”:

The cup contained TEA from dried GINSENG.

Traditional machine learning approaches treat this task as a multi-class classification problem, where

they apply various techniques in order to achieve high accuracy. Recently deep learning methods

have dominated the scene where current state of the art is based on representation learning strategies

such as Convolutional Neural Networks CNN and Recurrent Neural Networks RNN.

As a result, the accuracy of relation classification using deep learning models outperformed previous

state of the art methods (see table 4). However, the generated embeddings are tailored for the given

classification task. Thus, such embeddings are limited to this task, thus, they are not useful as a

general relational representation.

17http://semeval2.fbk.eu
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Relation Frequency

Table 3: Statistics of the benchmark dataset for relation classification.

Relation Frequency
Cause-Effect 1331 (12.4%)
Component-Whole 1253 (11.7%)
Entity-Destination 1137 (10.7%)
Entity-Origin 974 (9.1%)
Product-Producer 948 (8.8%)
Member-Collection 923 (8.6%)
Message-Topic 895 (8.4%)
Content-Container 732 (6.8%)
Instrument-Agency 660 (6.2%)
Other 1864 (17.4%)
TOTAL: 10717

Table 4: Results of embedding-based relation classification . The symbol means that one of the
classes Other (which introduces noise to the dataset) was removed.

Classifier Method and Feature F1 accuracy
MVRNN [95] Matrix-Vector Recursive neural network, word

embeddings
79.1

CNN [111] Convolutional deep neural network, word
embeddings

69.7

FCM[110] Factor-based compositional embedding, word
embeddings

80.6

CR-CNN [90] Pairwise ranking with Convolutional neural
network, word embeddings

82.8†

SDP-LSTM [108] Long Short Term Memory Network 82.4
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2.4 Ontology (concepts) and Knowledge Graphs (entities)

The objective of this section is to explain how we interpret the terminology Ontology and Knowledge

Graphs in the scope of this dissertation. The idea is not to confuse the reader when seeing words

like:

• concept (e.g. Car) vs. entity (e.g. Tesla)

• Ontology has to do with sub-classing (e.g. a sub-class is a class of super-class) vs. knowledge

graphs has to do with various relationship with multiple entities

• ontology (i.e. class or concept is-a ) vs. knowledge graphs (i.e. instance)

Ontology vs. Knowledge Graph

Table 5: Ontology vs. Knowledge Graph

Ontology Knowledge Graph

class or concept (e.g. Car) entity or instance (e.g. Tesla)
sub-classing (e.g. a sub-class is-a class of
super-class)

various relationships between multiple related
entities

(formally) has a single relationship is-a any kind of relationship e.g. located_in,
has_role

What is Ontology?

Ontology is concerned with the study of being or existence. That is, something being something else.

For example, in the sentence Car is an Automobile, we have two concepts Car and Automobile;

where the former is a subclass of the latter. In computer science, Ontology is a vital ingredient of

AI and Logical systems18. A short and formal definition of ontology:

“An ontology is a specification of a conceptualization.” Tom Gruber

Knowledge Base vs. Knowledge Graph

While both names could be used interchangeably, a knowledge graph is actually a graph-structured

knowledge base. However, a knowledge base, on the other hand, is not necessarily a knowledge

graph.

• knowledge base (i.e. disjoint facts) vs. knowledge graph (a network of related/interconnected

facts)

18For more details on Ontology meaning in the context of computer science, refer to this article: http://www-
ksl.stanford.edu/kst/what-is-an-ontology.html
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3 Representing Ontology Relationships

We first came across the problem of relational knowledge representation while working with seman-

tic web ontologies to represent relationships i.e. representing the semantic relations between two

nominals.

The following section is based on our published work [9].

3.1 Supporting Part-Whole Relations with OWL and Description Logics

(DLs)

In this section, we present our initial work on how we applied Semantic Web Tools and Technology

to extend the representation support to more than one type of relationship in ontologies.

Through this work, as it turned out, we are encountered with the problem of representing the

semantics of the relationships and reasoning over them. We also tried to describe the role of ontologies

in knowledge representation and reasoning. The flow of the following subsections and paragraphs

intends to convey the idea that ontology is an essential building block for intelligent systems.

The correct representation of hierarchy in ontologies is a crucial requirement to infer the true knowl-

edge. OWL is a widely used language for building web ontologies. However to represent partonomic

relations, unlike the generalization-based taxonomy (is-a relations), OWL does not provide any built-

in primitives neither a straight-forward procedure for part-whole relations [85]. However, although,

OWL-DL contains sufficient power to describe such relations, it still requires extra work to make full

use of this power. The current approach (best practices recommended by w3.org) uses that power

through manual implementations of the underlying steps; which could introduce an error-prone

process and may cause confusion in some cases.

In this paper, we propose a simplified approach to represent part-whole relations in a similar way to

subClassOf. Our method utilizes OWL-DL’s power through automated generation of the relation’s

restrictions. We make use of OWL’s annotation properties to capture the relations constraints,

then apply our method to automatically generate the equivalent OWL-DL representations. The

evaluation of our representation shows that the classification results and the inferred model (safe

reasoning) are the same as those of the current standard approach described in [85].
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Knowledge, Knowledge Representation, and Ontology

Grosan [46], defines knowledge in a generic way, as “information (which can be expressed in the

form of propositions) from the environment.” He, also, defines knowledge representation as “symbols

used to represent the propositions.” Based on that, Grosan describes knowledge representation and

reasoning as “the manipulation of symbols encoding propositions to produce representations of new

propositions.”

Gruber [47], defines Ontology 19 in short as “a specification of a conceptualization.” Ontology, as an

important ingredient in Artificial Intelligence field, is one of the common way used for representing

knowledge. In fact, ontology is an essential component for many intelligent systems as well, for ex-

ample semantic web, automated medical evaluations, IBM-watson, personal assistant and knowledge

navigators “e.g. Siri in Apple’s mobile devices”, and many others. In particular, ontology usage is

gaining increased interest in biomedical and military research 20.

However, representing partonmies relations in domain specific ontologies is a crucial prerequisite

for automated reasoning. For example, in the biomedical domain, coping with only ontological

dependencies between wholes and their parts may not be sufficient but rather the more important

is to capture the reasoning patterns which underlie the propagation of the partonomic hierarchies

[92].

This paper is organized as follows: Section 2 introduces the problem of part-whole in knowledge

representation, presents a literature survey of the proposed types and semantics of such relations,

and discusses the reasoning complexity. Section 3 describes our proposed approach with examples

and the evaluation methods. Section 4 discusses related work followed by the conclusions and future

work in Section 5.

Related work

Various work in literature were proposed to address the issue of partonomy problem in ontology. We

can distinguish between two types of work dealing with this problem. In the first type of research,

the focus were more on representation aspects; where in the second type, the work focused more on

the reasoning aspects.
19 In this paper, we discuss ontology from a computer science point of view not from a philosophical perspective.
20Basic Formal Ontology: http://ifomis.uni-saarland.de/bfo/
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In [92], Schulz et. al. try to solve the biaxial (reflecting both a taxonomic “is-a” and a parto-

nomic “part-of” hierarchy) structure in biomedical ontology by scaling down part-whole reasoning

to subsumption-based taxonomic reasoning in the expressivity level ALC of description logics.

In another medical related work [93], Seyed et. al. discussed the current approaches for representing

partonimc relations in SNOMED CT. They investigated the Structured-Entity-Part “SEP” triple

approach which is related to DLs at different levels of expressivity.

The Dilemma of Partonomy (Part-Whole) Relations

The complexity in representing part-whole relationships is not about how to represent them. The

main problem lies in how to reason over these relationships when they are represented in a certain

structure. In fact, reasoning (inference) is the ultimate goal for using ontology to represent knowledge

for many applications, and the semantic web is no exception. Therefore, the format of the structure

should be a machine-readable so that intelligent agents can comprehend that representation.

Unlike the generalization-based taxonomic reasoning (i.e. C is SubClassOf B, B is a SubClassOf

A, thus, C is a SubClassOf A), there are different types of part-whole relationships and each type

may have a different level of transitivity and associativity. This fact affects ontology building in

two ways; First there cannot be a single form to represent such relations, and as a result. Second;

increased complexity in partonomic reasoning.

Thus, any existing or proposed representation mechanism has to take into account these differences

in order to enable intelligent agents to infer the true intended knowledge.

Types of Relations and Part-Whole Relations

The study of part-whole relationships is an entire field of study by itself called “mereology” [85].

Although these relations may at first sound as a well-defined piece of knowledge, in practice, however,

the case is quite different. A consensus on the semantics of these relations yet to be achieved, which

contributes to the complexity of both representing and reasoning for these relations. Therefore,

it is important to establish common grounds about the conveyed semantic through each different

part-whole relation type.

In [26], Barchman analyses the semantics of the IS-A links in semantic networks through distinguish-

ing two general types of the meanings for this inheritance link. In order to interpret the relation
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links, he describes two type of nodes 1) generic “internal nodes”, the relation between nodes of

this type is described as generic/generic relations, in description logics terminology, this can be de-

fined as the Terminological Box “TBox” relations. 2) individuals “leaves”, here the relation between

an individual and a generic nodes is described as generic/individual relation in description logics

terminology, this can can defined as the Assertional Box “ABox” relation.

The intent of generic/generic relations is usually that one is somehow related to, but less gen-

eral than, the other. The kind of uses in this relation include (1) subset/superset, (2) generaliza-

tion/specialization, (3) a kind of, e.g. a camel is a kind of mammal, (4) conceptual containment,

called the is-a of lambda-asbraction, e.g. a triangle is a polygon, (5) role value restriction, e.g. the

trunk of an elephant is a cylinder 2 meters long, and the (6) set and its characteristic type.

While in the generic/individual relations, the intent is that the individual is describable by some

general descriptions. This type of relations is commonly called “instantiation”. The kind of uses in

this relation include (1) set of membership, e.g. Clyde is a camel, means that Clyde is a member

of the set of camels. (2) predication, (a predicate to an individual) e.g. if the generic is Camel and

the individual is Clyde, this relation conveys that Camel(Clyde), (3) conceptual containment, e.g.

the relationship between “King” and “the king of Saudi Arabia”. Generic is used to construct the

individual description, (4) abstraction, e.g. the eagle is an endanger species.

As an attempt to explain the semantics of meronymic relations, [106] developed a taxonomy for part-

whole relations to explain the ordinary English-speaker usages of part-of. Their classification yields

six types of part-of relations. The types are 1. component-integral object, pedal-bike, 2. member-

collection, ship-fleet, 3. portion-mass, slice-pizza, 4. stuff-object, steel-vehicle, 5. feature-activity,

paying-shopping, and 6. place-area, Manhattan-New York.

The six types are differentiated from one another by three properties that hold associatively between

parts and wholes, functional: where the parts play the functional role; homoeomerous: where the

parts are similar to the whole and to each other; separable: where the parts are disconnected from

the whole [7].

In practice, [85] distinguishes two categories, simple and complex, of part-whole relations when they

demonstrate how to, formally, represent part-whole relations in OWL. The first, simple part-whole

relations, denotes most of the straightforward cases, i.e. , the finger is part of the hand, and, an

engine is part of a car. The second category describes the complex part-whole cases that should

not be confused with previous types. The cases include types such 2) containment i.e. the chair is
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contained in the room, does not mean that the chair is part of the room 3) membership i.e. a faculty

member is part of the committee, here membership is not transitive. 4) connections and branches

i.e. the tributary, it is connected to the river, is not part-of the river. Likewise, a light bulb when

connected to electricity does not mean it is part of it. 5) constituents, controversially, this kinds

distinguishes between the clay and a statue made of clay. Here it described as the clay constitutes

or is constituent of the statue.

In addition to the aforementioned, many other types of part-whole relations have been proposed in

the literature. However, many of them may lack a formal specification to convey clear semantics to

them. So to tackle this problem, [54] proposed a formal taxonomy model (Fig.9) for the (mereological

and meronymic) part-whole relations. The model, which is based on various part-whole relations

that have been introduced and/or discussed in the literature, presented as a way of dealing with

part-whole relations in conceptual data models (and domain ontologies).

Figure 9: Keet’s Taxonomy of basic mereological and meronymic part-of relations. Dashed lines
indicate that the subtype has additional constraints on the participation of the entity types; ellipses
indicate several possible finer-grained extensions to the basic part-whole relations.

Reasoning Complexity

Developing a powerful, robust, and reliable domain ontology that support large-scale of formal

reasoning is a key requirement for intelligent systems. However, the diverse forms of partonomies

(as discussed above) introduces a real challenge toward realizing that requirement. Thus, and as

part of the efforts to remedy this obstacle, two aspects of reasoning on part-whole relations have

received special attention in the literature Transitivity and Taxonomic Reasoning [48].

In transitivity, it has been long debated whether the part-whole relation’s transitivity holds for ade-

quate reasoning or not, that is, e.g. if concept x is part-of concept y how far in the hierarchical levels

could this relation hold for the upper concepts. In [106], they argue that part-whole relations should

be considered transitive as long as they keep a single sense of part. From this perspective, the general

part-whole relation is not transitive, but each of its distinct sub-relations are. However, generally
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when more than one single-sense involved in the chain of of part-whole sub-realtion, transitivity no

longer holds. Thus, [48] argue that this problem “cannot be solved at the level of the axiomatic

definition of knowledge-representation languages and, for example, the transitivity operators with

which they can be equipped.”

For taxonomic reasoning in partonomies, two patterns that crucially depend on part-whole relations

were discussed in the literature. The first one relates to role propagation in partonomies. Generally,

if two relations, R “part-of” and S “sub-relation of part-of” (that is, S ⊑ R) , are given and we have

xRy and ySz then the following implication holds:

xRy ∧ ySz ⇒ xRz

The second pattern is that the above framework allows concept specialization in partonomies. Gen-

erally, this pattern phrased as follows: for two relations R and S such that S ⊑ part− of , then:

xRy ∧ wRz ∧ ySz ⇒ x is-a w

We notice that the second reasoning pattern is actually a special form of the first one [48].

Expressivity and Reasoning complexity

The trade-off relation between expressivity and reasoning complexity is another important issue to

take into consideration when developing ontology representations.

For instance, ontological knowledge can be represented in different profiles of OWL (e.g. using

different levels of description logics expressivity such as AL, ALC, SHIF , SHOIN). Clearly, the

more detailed our ontological representation the more knowledge we can infer; however, as a result,

the cost of this will be increasing level of complexity for the available reasoning tools. On the one

hand of this issue there are large ontologies like SNOMED CT, expressed with expressivity logics

such as OWL EL; on the other hand, the issue does not end with the relatively expressive OWL

DL. Since some of the true knowledge might be lost when ignoring the details in the representation,

it is a common practice to intersperse OWL with FOL axioms in the comment or annotate them.

Although these axioms will be ignored by reasoners [56].

In [93], they investigated the representation of the part-whole relationship in SNOMED CT. As part

of their analysis, Seyed and Rector et. al. intend to inform the SNOMED CT community to take

the trade-offs issue into account for future decisions about the representation of their anatomical

taxonomy.
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Our Approach

We introduced a straightforward method that exploit OWL’s annotations, and used in RDF/XML

syntax, to define classes for parts in partonmic relations. The goal of our approach is to provide

a simplified OWL primitive for describing part-whole relations in the same way used for describing

subclass relations.

Our approach is based on the representation discussed in [85]. We further simplify the mechanism

that Rector et al. described for representing part-whole in OWL. In the third representation pattern

“Defining classes for Parts” (described in [85]), they demonstrated how to formally represent TBox

part-whole relations in OWL. Their technique involves three separate tasks prior to producing the

preferred partonomic ontology. Each task could comprise more than one step. Some of the steps

may not be intuitive which introduce additional confusion to the ontology developer. The three

tasks in general are:

1. defining a property “role” with preferred restrictions

2. defining an aggregating class for parts “classPart”

3. extending the part class to cope with the restrictions of the role relationship.

This approach [85], is currently recognized (by www.W3.org) 21 as the standard method for repre-

senting part-whole classes in OWL. Therefore, in this paper, we will refer to that technique as the

current approach and we will refer to our technique as the proposed approach.

In the proposed approach, we integrate all the three steps mentioned above in a single RDF/XML

line (See listing 3) and supports transitivity and cardinality declarations as well. The representation

reasoning of the proposed approach yields the same inference as the current approach.

In addition, we provide a simple technique for visualizing the final inferred ontology model which

include the partonmic relations from our simplified approach.

OWL: Part-Whole Representation Problem Revisited

The problem of part-whole relaitons in OWL is that there is no built-in primitive for representing

such relations. However, OWL does provide sufficient expressive power to support most of the

partonomic relations [85]. But in order to utilize this support, an ontology developer has to go

through some extra work “work-arounds” to successfully express the intended representation. This
21OWL Part-Whole Best Practices: http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/
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extra work, however, includes “manually” conducting some underlying steps where they can be

automated.

Scenario

To explain this better, and to demonstrate both current approach and the proposed approach solu-

tions, we will use a simple use-case scenario with is-a and partOf relations. We show the current

approach mechanism to define the partonomic relation in OWL. Thereafter show our proposed

approach and compare the two. The following scenario example includes both types of relations

generalization-based and partonomic-based. Assume we would like to, formally, represent the piece

of knowledge visualized in Figure 10, that is to use OWL to define:

• Vehicle class as a generalization of (is a) Car class, and

• Engine class as a part of Car class.

Figure 10: Simple Scenario For PartOf and IS-A relations

To represent the is-a relation, we can, simply use the predefined keyword (subClassOf) as shown in

listing 1.

Algorithm 1 Defining is-a relation in OWL
<owl:Class rdf:about="NS#Vehicle">

<rdfs:subClassOf rdf:resource="NS#Car"/>
</owl:Class>

However, there is no such straight-forward way (keyword) for defining the part-of relation. The

reason for this is that: (1) partonomic relations are different and there could be multiple forms for

such relations as discussed earlier. (2) there are some constraints e.g. transitivity, associativity, and

cardinality need to be imposed to specify the relation’s restrictions.

Hence, we could utilize the power of OWL-DL to express this relation with its constraints. The

process for doing so may vary depending on the expressivity level involved in the relation. However,

in this example we consider the direct and simple form of part-of relation as depicted Fig.10.

Thus in order to define the part of relation using OWL, the required process proceeds as follow:
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• Create an objectProperty partOf (with specifying whether it is transitive or not) to represent

the relation between the two classes.

• Create a new part-aggregating class carPart to represent the type of the part class. Then use

OWL-DL to:

– make it an equivalentClass of the restriction partOf some Car.

e.g. carPart ≡ ∃ partOf Car

• Extend the part Class Engine to cope with the constraints. By using OWL-DL to:

– make it a subClassOf of the restriction partOf some Car.

e.g. Engine ⊑ ∃ partOf Car

In this way, the carPart will denote the aggregation class point where the car parts classes e.g.

Engine become part of the class Car.

Although our intention is to describe one well-defined piece of knowledge (that is, Engine is a part of

the Car), the Current Approach for defining that relation implements each of the tasks “mentioned

above” separately and independently. This could be a long, tedious, and error-prone process. The

outcome of these independent tasks is shown in listing 2.

Algorithm 2 Current approach for defining Engine as part-of Car

<owl:ObjectProperty rdf:about="&part;partOf">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>

</owl:ObjectProperty>

<owl:Class rdf:about="ns#Engine">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="ns#partOf"/>
<owl:someValuesFrom rdf:resource="ns#Car"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="ns#CarPart">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="ns#partOf"/>
<owl:someValuesFrom rdf:resource="ns#Car"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

The Proposed Approach, in the contrary, tends to make this description as simple and abstract

as possible. Where we combine all the three tasks in a single integrated task. This will 1) reduce

the amount of work needed, and 2) remedy the complexity level involved in the process, hence 3)

minimize the possibility of making errors. Listing 3 illustrates our simplified approach. As appears

from the listing, we introduce the annotation property relation as a keyword for describing any
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part-whole relations. Thus clearly, the approach could be applied with any type of part-whole

relations not only part of.

Algorithm 3 Proposed approach for defining Engine as part-of Car

<owl:Class rdf:about="NS#Engine">
<relation:partOf transitive="yes" rdf:resource="NS#Car"/>

</owl:Class>

The idea of this approach Fig. 11 is to simulate the partonomic relation “using annotation prop-

erty” with specifying its constraints “using attributes” in one line. Then we apply our method to

automatically 1) extract these information, thereafter 2) map them to the matching specifications,

where it will then 3) generate the proper OWL elements.

Simulated Relations Using OWL Annotations

↓

Transformation Relation ↔ Elements Mapping

↓

Generate Final layout Standardized RDF/XML

Figure 11: Proposed Approach Conceptual Work Flow Model

In the automated generation step, we produce a new name for the aggregating class by concatenating

the name of relation (e.g. partOf) with the name of whole class (e.g. Car). When concatenating

the two strings, we use an underscore (e.g. partOf_Car) to keep the two separable for future

distinguishing.

Figure 12: Conceptual Model: The Mapping Stages of Our Method
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Automated Generation Steps

To further elaborate on this method, we provide step by step examples of how the method produce

the final OWL layout. Figure 12 illustrates the general outlines of mapping stages. The input will

be a simulated part-whole relation (like the one in listing 3), so the method starts by parsing that

line to extract the relation’s 1. part class, 2. whole class, and 3. specifications (e.g. transitivity, and

existential). From there, the part class will be extended as a sub class of the whole class (listing

4). The property object will be generated as shown in listing 5. And finally the aggregating class

will be generated as appears in listing 6. This process will happen continuously as long as the input

OWL file contains the simulated relations.

Algorithm 4 Automated mapping stage 1

<owl:Class rdf:about="ns#Engine">
<!-- Auto generated mapping -->

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="ns#partOf"/>
<owl:someValuesFrom rdf:resource="ns#Car"/>

</owl:Restriction>
</rdfs:subClassOf>

<!-- End mapping -->
</owl:Class>

Algorithm 5 Automated mapping stage 2

<!-- Property -->
<!-- Auto generated mapping -->

<owl:ObjectProperty rdf:about="ns#partOf">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>

</owl:ObjectProperty>
<!-- End mapping -->

Algorithm 6 Automated mapping stage 3

<!-- Auxiliary Class -->
<!-- Auto generated mapping -->

<owl:Class rdf:about="ns#partOf_Car">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="ns#partOf"/>
<owl:someValuesFrom rdf:resource="ns#Car"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>
<!-- End mapping -->

Approaches Compared

To compare our approach with the current approach, we use the Car22 ontology example discussed

in [85]. However, since our method currently deals with ontologies of description logics type AL and
22 part.owl, example2.owl, and example3.owl
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map them to ALE+, we modified the Car ontology example to exclude the ALEHI+ part namely:

• Inverse properties

• Sub-properties

As a way to statistically compare the two approaches, we use the Car example to collect the ontology

metrics from both current and proposed approach, see our complete simulated approach listing 7.

Then we compare the two where we consider the different values of the metrics only. The results are

show in Figure 13. We, also, notice that the difference between the two methods gets larger with big

ontologies. The important thing to mention here is that both ontologies provide the exact level

of representation expressivity. Thus, the reasoning underlie these two representations is the same.

Figure 14 show the final inferred model from the representations.

This simplified way will help ontology developers to focus on the logical hierarchy of the ontology,

as a result of reducing the work needed to produce the auxiliary partClasses and their accompanying

constraints separately.

Figure 13: Ontology Metrics Comparison: Current Approach vs. Proposed Approach

Evaluation Method

In order to evaluate our approach, two things need to be tested when we simulate and generate the

final ontology layout:

1. the format of generated ontology from our mapping process must be syntactically validated

and formed correctly “well-formed”, and

2. the inference from the representation must convey the true knowledge, e.g. correctly express

the knowledge while support ontology reasoners.

For validating our generated ontology, we use saxParse engine (built-in in the commonly used on-

tology editor Protege 5.0) for verifying the well-formedness of our ontology at each mapping stage

throughout our experiments.
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(a) The Inferred Model of Our Transformed Rep-
resentation

(b) The Inferred Model of The Current Approach

Figure 14: We use HermiT 1.3.8 reasoner (built-in protege) to evaluate the representation reasoning
of both (a) our approach (b) the current approach for ontology example 3. And the results (as
anticipated) are the same.

While for evaluating the representation reasoning and to ensure a correct inference, we used HermiT

1.8.3. reasoner (built-in reasoner in Protege 5.0).

Future Work

As the introduced approach simplifies the process involved in describing partonomic axioms, devel-

oping OWL ontologies becomes even simpler than what we usually experience. Specially, when we

apply this approach for building a domain specific ontology. Therefore, we are most excited to

further exploit the simplified approach for Semi-Automatic Ontology Building. Actually, we have

already started this experiment. Where, we acquire knowledge bases in the form of triples, then we

use our dictionary data structures to represent the triples as input for our simplified approach.

Also, we are going to extend the support of our approach to include mapping to other levels of

OWL-DL, e.g. inverse and subProperties (ALEHI+).

We are also planning to interface our module with Protege through a plugin. Another thing we

are looking into is the possibility of conversion to other OWL formats (e.g. Manchester, Functional

OWL).
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Conclusion

As intelligent systems (AI technologies in general) become more dependent on the ontological rep-

resentations for eliciting knowledge, the accuracy of ontology hierarchy contributes heavily to the

success of those systems. The building blocks of this hierarchy are the taxonomic (generalization-

based) relations and the partonomic (part-whole) relations. Although the former has a well-defined

underlying knowledge, thus, a clear representation, the latter is still lacking.

However, despite the ongoing non-consensus about how to represent the underlying knowledge of

partonomic relations, we believe that providing a clear and less ambiguous procedure to denote such

relations will surely lessen the reasoning confusion.

In this paper, we have introduced and demonstrated our simplified approach for representing part-

whole relations in OWL. Where we utilized OWL’s annotations properties to represent part-whole

relations in a manner inspired by subClassOf.

By doing so, we believe that our approach contributes to (1) reduce the amount of work needed

for building ontologies, (2) remedy the complexity involved in representing part-whole relations, (3)

minimize the possibility of making errors throughout the process, and in the future to (4) provide

support to Semi-Auto Ontology Building.

Figure 15: Visualization of The Simplified Ontology in Listing 7: Using Our Module We Visualize
The Inferred Model Directly From The Simplified Representation
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Algorithm 7 Our Complete Simplified Representation For Car ontology (Example 3)

<owl:Class rdf:about="ns#Carburator">
<relation:partOf rdf:resource="ns#Engine"/>

</owl:Class>

<owl:Class rdf:about="ns#Crankcase">
<relation:partOf rdf:resource="ns#Engine"/>

</owl:Class>

<owl:Class rdf:about="ns#Engine"/>

<owl:Class rdf:about="ns#Wheel"/>

<owl:Class rdf:about="ns#Carburator"/>

<owl:Class rdf:about="ns#Reflector"/>

<owl:Class rdf:about="ns#Engine">
<relation:partOf rdf:resource="ns#Car"/>

</owl:Class>

<owl:Class rdf:about="ns#Wheel">
<relation:partOf rdf:resource="ns#Car"/>

</owl:Class>

<owl:Class rdf:about="ns#Headlight">
<relation:partOf rdf:resource="ns#Car"/>

</owl:Class>

<owl:Class rdf:about="ns#Car"/>

<owl:Class rdf:about="ns#HeadlightBulb"/>

<owl:Class rdf:about="ns#HeadlightBulb">
<relation:partOf rdf:resource="ns#Headlight"/>

</owl:Class>

<owl:Class rdf:about="ns#Reflector">
<relation:partOf rdf:resource="ns#Headlight"/>

</owl:Class>

<owl:Class rdf:about="ns#Headlight"/>

<owl:Class rdf:about="ns#Crankcase"/>
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3.2 Supporting Multi-Type Relations with Machine Learning

3.2.1 Employing embedding methods to represent Relationships and Entities:

In our earlier work, we tackle this problem by relying on Web Ontology Language to encode the

entire knowledge of a given domain. However, hand-coding knowledge is challenging. It is not

possible to capture all the different types of relationships and associations between concepts. As a

result, this approach suffers when it comes to scalability, adaptability, and maintainability. So we

had to turn our focus to a more scalable approach, that’s when we decided to use machine learning

to approach this problem. Although the two approaches are relatively unrelated, in this dissertation

we describe our experimentations with both approaches.

Hand-coding knowledge. In our previous work, we relied on semantic web tools such as OWL23 and

RDF to build ontology models such that it can be exploited by an intelligent computer program

(e.g. reasoner) to perform tasks such as knowledge inference.

These tools are suitable for representing generalization-based (i.e., IS-A relations) relational knowl-

edge. Such that it can describe the sub-hierarchical associations between entities (e.g. “Car is

a Vehicle”, “Vehicle is an Automobile”, and so on). However, things can get a bit complex

and tricky as we encounter relation types other than IS-A. The description level in OWL ontologies

(i.e. the expressiveness) is very crucial for conveying the underlying knowledge of the relations and

associations between entities.

To this extent, OWL comes in variant description-logic-based sublanguages (OWL Lite, OWL DL,

and OWL full) for facilitating the representation of complex associations and different semantic

relation types (e.g. part-of and has-part). Description Logics empower OWL with the required

capability to formally specify different kinds of semantic relations. Nonetheless, this comes with its

cost.

Utilizing OWL’s capability to build a certain ontology requires a close expertise supervision and

multiple manual steps. For example, to construct a gene-related ontology, a domain expert (gene

specialist in this case) needs to specify the semantic relations between genes and their interactions.

Ontology developers are then to perform a series of OWL specification steps in order to translate

these semantic relations into formal rules. As an attempt to mitigate some of the overwhelming

steps for building ontologies, we had proposed a simple and automated approach [9] to reduce some
23The Ontology Web Language or OWL is a Semantic Web language designed to represent rich and complex

knowledge about things, group of things, and relations between things, see https://www.w3.org/OWL/.
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of the steps required for specifying part-whole relations in OWL-DL ontologies.

However, beside being a tedious task, the ontology building process becomes challenging as the

knowledge domain expands and relation types increase. Hence, with the inherit complexity of the

world’s rules, domain experts and ontology developers alike struggle to devise formal specifications

to accurately describe the world with minimum complexity.

The search for a scalable and future-proof solution. As a result of these limitations, we had

to investigate other approaches that can be better at handling scalability and have the ability to

self-learn the rules of semantic relations and their associations. Therefore, in the second phase of

our research we moved on to focus more on machine learning methods. Such that, our objective

is to develop a supervised model that can uncover the underlying structure of semantic relations

and capture their association rules through learning from examples. Knowledge base (or knowledge

graph) data is the example in this case.

3.2.2 Visualizing entities and their relationships

During our early exploratory analysis of the data, we needed a quick way to visualize knowledge

base triplets in a directed graph fashion. There are plenty of software and tools that can be used to

build and visualize graphs. However, most often in such tools one would need to build each node

separately and then, in a subsequent step, add edges between the related nodes. This is not quite

efficient for our case specially with the large collection of (head, relation, tail) triplets. So instead,

we wanted a tool that we can use to build and visualize KB graphs in batches just by feeding the

triplets as plain statements. To do that, we have created a small Python module which we called

PyGraph24. PyGraph is essentially a customized wrapper around a popular graph visualization

software called “Graphviz”25. With PyGraph we can build knowledge graphs from raw triplets with

specifying the delimiter that bisect the triplet’s head, relation, and tail. The relational statements

can be supplied to an instance pygraph class either from the command line or within-module by

streaming them from a file.

Say for example we have the file “molecule.txt” which contains a knowledge base fragment about

the entity “Molecule” as follows:
__radical_NN_1 _part_of __molecule_NN_1
__physics_NN_1 _member_of_domain_topic __molecule_NN_1
__molecule_NN_1 _has_part __atom_NN_1
__unit_NN_5 _hyponym __molecule_NN_1

24see code and details at: https://github.com/iamaziz/pygraph
25http://www.graphviz.org/
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__chemical_chain_NN_1 _part_of __molecule_NN_1
__molecule_NN_1 _hypernym __unit_NN_5

We can build the complete knowledge graph of this fragment by using few lines of code, e.g.

>>> from pygraph.dgraph import PyGraph
>>> g = PyGraph()
>>> g.file_relations("molecule.txt")
>>> g.draw_graph()

Which would instantly generates the directed graph shown in figure 16.

Figure 16: An example fragment of WordNet KB in a graph generated by our PyGraph wrapper.

Exploring word embeddings. As part of getting acquainted with neural language modeling

technique, we have experimented on applying word embeddings to a real world problem. Where we

build and train a model for detecting sentiment in Arabic text [10, 8] using neural word embeddings

alone as the primary source of features.

In order to train the sentiment classifiers, we had to first build word representation model. For

that purpose, we compiled a corpus of around 190 million words where we use them in our CBOW

language model to generate word vectors for the corpus vocabulary. The results of our experimen-

tations have proven to us that feature representations using neural language model are superior to

state of the art manual feature extraction methods26.

3.2.3 Experimental observations

In this section, we present our preliminary work on this problem (i.e. relation embeddings); which was

mainly focused on experimenting and testing the existing approaches in literature. Our completed

work is introduced in chapter 5.2.
26See embeddings and related code at https://github.com/iamaziz/ar-embeddings
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Initial observations. As we saw in algorithm 8, the model’s objective is to learn embeddings for

the entities E and relations R that best describe the training examples D through minimizing the

loss function. By the time of this writing, the final model is not concluded yet. However, we carried

out several preliminary runs (on WN18 dataset) during the parameters tuning and score function

search. And we have noted few observations from those runs.

We noticed, as pointed out by [24], that smaller embedding size (e.g. k = {20, 50}) tends to perform

quite better in compare to larger dimensions (e.g. k ≥ 100), see figure 17. Likewise, a larger batch

size (e.g. 400-500) performs relatively better than smaller ones (e.g. 100), see figure 18.

We also visualized the learned embeddings of the 18 relation types in a 3D vector space. Figure 19

displays one of the relations (_part_of) compared to its most similar neighboring relations.

Figure 17: Ranking loss with different embedding size. From top to bottom embedding size k =
{100, 50, 20}

Figure 18: Slight improve in ranking loss after increasing the batch size from 100 (orange) to 400
(blue)

Tools used. In all conducted experimentations we use Python as the main language with its

rich scientific ecosystem libraries such as NumPy (for numerical computation) and Pandas (for

data processing and analysis). To build and train the neural language model, we use TensorFlow

framework [1] through its Python API27. As an open source framework, TensorFlow is used primarily
27www.tensorflow.org/api_docs/python/
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Figure 19: Visualizing relation embeddings in a 3D vector space model (dimensionality reduction
is based on t-SNE). In the sample: appears top 5 nearest neighbors (using cosine-similarity) of the
relation _part_of .

for constructing neural networks in computational graphs manner that support both GPU and CPU

computation. To easily inspect, understand, debug, and optimize the built model, TensorFlow

provides a nice web application suite called TensorBoard28. We use TensorBoard to visualize the

learned embeddings and monitor training errors.

The great thing about TensorFlow, and other deep learning frameworks such as PyTorch29 and

Theano30, is their productivity for quick model construction and automatic differentiation feature.

They can easily calculates all derivatives necessary for running an optimization model such as stochas-

tic gradient descent.

28www.tensorflow.org/get_started/summaries_and_tensorboard
29http://pytorch.org/
30https://github.com/Theano/Theano
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4 Embedding-Based Representation: Learning Embeddings

for Relational Data

4.1 Building Embeddings From Raw Text

We consider knowledge graphs as a form of natural language. In other words, the triplets are written

in linguistics format, so they possess the linguistic characteristics that apply to normal text. The

goal of this section is to demonstrate the capability of neural embeddings in capturing the semantic

and syntactic features of the language.

4.1.1 Embeddings to replace hand-crafted feature extraction in text

The following is based on our published work [10, 8].

Building and applying embedding model to detect sentiment in Arabic

text

Manual feature extraction is a challenging and time consuming task, especially in a Morphologically

Rich Language (MRL) such as Arabic. In this experiment, we rely on word embeddings as the main

source of features for opinion mining in Arabic text such as tweets, consumer reviews, and news

articles. First, we compile a large Arabic corpus from various sources to learn word representations.

Second, we train and generate word vectors (embeddings) from the corpus. Third, we use the em-

beddings in our feature representation for training several binary classifiers to detect subjectivity

and sentiment in both Standard Arabic and Dialectal Arabic. We compare our results with other

methods in literature; our approach—with no hand-crafted features—achieves a slightly better accu-

racy than the top hand-crafted methods. To reproduce our results and for further work, we publish

the data and code used in our experiments 31.

Introduction

Sentiment analysis is a very common task in Natural Language Processing (NLP), where the goal

is to determine the attitude or feeling conveyed in some text. With the surge in microblogging and
31code and data available at: https://github.com/iamaziz/ar-embeddings
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similar services, opinionated posts and texts are flooding the Internet. Hence, sentiment analysis

has gained much attention and is in demand for many applications (e.g. business analytics) because

of its simplicity and efficiency. Various products are being developed around users’ opinions ranging

from consumer reviews to reactions surrounding political events.

Although English has been the target language in most sentiment analysis research, recent efforts

extend the focus to other languages such as Arabic. Basic machine learning techniques—as simple

as Naïve Bayes—have been used to achieve baseline results [16, 75]. However, these systems require

lots of feature engineering work prior to applying any machine learning method.

Most Arabic sentiment analysis systems still rely on costly hand-crafted features, where features

representation requires manual pre-processing in order to obtain the preferred accuracy. For example,

Mourad and Darwish (2013) report that POS tagging and word stemming have major effect in

improving their sentiment classification result. Morphology-based features have, also, been shown

to improve the system’s performance [4]. A manually-prepared list of emotion words “polarity

lexicon” is another requirement in such systems. And not to mention the efforts spent on handling

random sentence structures in dialectal Arabic.

In this work, we present neural word embeddings as an alternative for such hand-crafted features in

Arabic sentiment analysis. We embed Arabic words in a continuous vector space. This allows us to

represent sentiment features as dense vectors instead of the conventional sparse representations. We

consider the sentiment task as a standard binary classification problem, thus we discriminate only

between either positive/negative or subjective/neutral sentiment.

The contributions of this paper include:

• Employing distributed word representations to embed sentiment features as dense vectors in

Arabic sentiment analysis; where we achieve a significant performance.

• An Arabic corpus that we have built carefully from various text collections.

• A pre-trained Arabic word embeddings generated from the aforementioned corpus.

• A labeled (positive/negative) Arabic twitter dataset that we gathered from several published

datasets and refined them into a larger dataset.

Related Work

We are not aware of a published work that utilize embeddings in a sentiment (or classification)

task specifically for Arabic text. However, research on Arabic sentiment analysis is getting more
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attention from the research community recently. The majority of the existing work rely on manually

engineered features in their classification. One of the most prominent features is the existence of

certain words in a sentiment lexicon. Lexical-based features have been heavily exploited in almost

all reviewed work of Arabic sentiment analysis [4, 5, 75, 6, 25].

In [4], they used both morphology-based and lexical features for subjectivity and sentiment classi-

fication of Arabic. Where POS tagging and stemming features were the key strength for [75] to

achieves a remarkable performance on the subjectivity of Standard Arabic. As well as a whole cor-

pus of labeled emotion words of Standard Arabic was presented in [3] for subjectivity and sentiment

analysis.

On the other hand, a set of open issues and difficulties in Arabic sentiment analysis has been surveyed

in [34].

4.1.2 Experiment design, implementation, and validation

Word Embeddings in Arabic Language

Semantics representation is a challenging task in natural language processing. Nonetheless, with the

recent advancement in neural word representations models [68, 69, 58, 84], word embedding32 has

emerged as the main spectrum for distributional semantic models. For the first time, distributed

representations of words make it possible to capture words semantics; even the shift in meaning

of words over time [66]. Such capability explains the recent successful switch in the NLP field

from linear models over sparse inputs33, e.g. support vectors machines and logistic regression, to

non-linear neural-network models over dense inputs [40]. Consequently, systems that rely on word

embedding have been very successful in recent years, across a variety of NLP tasks [64].

Neural word embeddings are prediction-based models. In other words, in order to come up with

distributed representations for words, the network learns its parameters by predicting the correct

word (or its context) in a text window over the training corpus.

While the point of network training is to learn good parameters, word vector representations follow

the notion that similar words are closer together34. In linguistics, this is known as “Distributional

Hypothesis”35. This underlying idea is beneficial for extracting features from text represented in
32Originally introduced in 2003 [19].
33Although, a very recent work shows “re-discovers” the effectiveness of linear models through proposing a simple

and efficient linear model for text classification and representation learning [51].
34“You shall know a word by the company it keeps.” (Firth, J. R. 1957).
35“Deep Learning for NLP” by R. Socher, 2016.
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Table 6: Corpus collections and sources

source word count

Quran-text 751,291

watan-2004 ∼ 106 million

cnn-arabic ∼ 24 million

bbc-arabic ∼ 20 million

consumer reviews ∼ 40 million

such way; especially for understanding the context of word use in sentiment analysis. Since this

notion is viable for any natural language, we take advantage of that and apply it to Arabic. Next we

describe our approach for collecting an Arabic corpus and generating word vectors from the corpus.

Building and Preprocessing Corpus

We build a corpus from a set of publicly available text collections. Text contents are mainly news

articles based on a local Arabic newspaper [2] and Arabic editions of international news networks36

[88]. To enrich the corpus with dialectal vocabulary, we also include a pool of around 63 thousand

consumer reviews [12] , which include a mixture of different spoken Arabic. Further, as observed

by [75], some social media users may tend to convey their feelings through using some verses from

the holy Quran. Therefore, we include the complete text of Quran37 in our corpus as to account for

such sentiments. The complete corpus contains around 190 million words. Table 6 shows the corpus

details with sources.

Next, we need to ensure the formatting of the sentences and words before we generate the embedding.

Although most of the text collections are prepared properly since they come from published work,

we notice few irregularities in some chunks of the text such as non-arabic letters and mis-placed

punctuations So we perform further preprocessing (e.g. extracting a sentence tokens then re-joining

them) on the complete merged text. Python’s NLTK38 was our perfect assist for sequencing the

text. Though we ran into some encoding issues39 that were eventually cleared.
36Such as CNN and BBC.
37Quran text source: http://tanzil.net (we used the simple-text version).
38http://www.nltk.org/api/nltk.tokenize
39Due to the difference between Python2 and Python3 in handling character unicode.
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Generating Word Vectors

There are several models available for learning word embeddings from raw text. Among these are

GloVe [84] and dependency-based word embeddings40 [60]. Our choice, however, is the well known

and widely used word2vec model [68, 69]. Word2vec describes two architectures for computing

continuous vectors representations, the skip-gram and Continuous Bag-Of-Words (CBOW). The

former predicts the context-words from a given source word, while the latter does the inverse and

predicts a word given its context window. We use CBOW to learn the embeddings; since it is simpler,

computationally-efficient, and suitable for larger datasets [17].

Embeddings experiment setup

We are not sure about a good choice of hyper-parameters, so we ran several experiments with different

settings. With each run, we would apply the generated embeddings to the sentiment classifiers (a

sort of brute-force) to test performance. We tried arbitrary choices for window size (5, 10, 15, and

20) and embedding dimensions (200, 300, 500, 700). Based on the classifiers’ performance, window

size 10 with 300 dimensions seems to be our best choice for learning good embeddings. Since the

average size of each tweet in our dataset is 8.5 words, a window size of 10 would make sense.

From the available implementations, we experimented on both the original C implementation of

word2vec toolkit41 and Python’s gensim42. Training time takes around 102 minutes on a machine

with 3.1GHz CPU and 16GB of RAM. From around 190 million words in our training corpus, the

learned embedding size is 159,175 vocabulary.

Evaluating the embeddings

For English embeddings, vectors quality can be evaluated using a test set that comprises around

20,000 semantic and syntactic questions. However, for Arabic, we are not aware of any evaluation

method. The actual quality measure, as we mentioned earlier, would be the classifiers’ performance

down the road. We create multiple similarity and analogy queries to see how reasonable our embed-

dings are. Table ?? shows examples of the performed semantic analogy queries; while in Table ??,

we show examples of sentiment-related results of the embeddings.
40A modified version of word2vec
41https://code.google.com/archive/p/word2vec/
42https://radimrehurek.com/gensim/models/word2vec (Note: gensim library is a bit more sensitive to Arabic en-

coding, and it requires sequencing the input text.)
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Dealing with dialectal Arabic is difficult. One of the problems is the use of different spellings for

the same word. For example, some users may violate spelling rules of a certain word by adding

or omitting letters. Fortunately, word embeddings work well in this situation. Since the different

(misspelled) word variations are mostly used in the same context, they will have similar word vectors.

Thus, we know they are semantically the same even though we actually did not specifically handle

these violations. In our approach, we take this issue into account; that is why we include dialect

text (the consumer reviews) in the training corpus. This will save a lot of efforts spent during

preprocessing to handle such variations. Table ?? shows similarity results of two words in dialectal

Arabic. We include the transliteration43 in the table to show how each word is written differently.

43Transliteration is based on Buckwalter.s See: http://www.qamus.org/transliteration.htm
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Sentiment and Subjectivity Analysis

Datasets

We use three different datasets in our classification experiments. For the sentiment classification, we

use twitter and book reviews datasets; we assume these two as “dialectal Arabic” text. Whereas for

subjectivity classification we use news articles dataset, which is “Standard Arabic” text. The book

reviews is scraped by [12] from a community driven website44. While for news articles dataset, we

use the labeled news articles of [16] which is based on an automatically translated Arabic version of

MPQA corpus45.

Table 7: Our collection of Twitter datasets and the source of each.

Dataset name & source positive negative total

ASTD (Nabil et al., 2015) 777 812 1589

ArTwitter (Abdulla et al., 2013) 993 958 1951

QCRI (Mourad and Darwish, 2013) 377 377 754

TOTAL 2147 2147 4294

For twitter dataset, we were not able to acquire a sufficient number of labeled tweets. So, we

rely on previously published datasets in [76, 6, 75] to compile a relatively larger set of tweets. To

easily distinguish these datasets, we refer to them as ASTD, ArTwitter, and QCRI respectively.

Originally, ASTD tweets were grouped in four categories (positive, negative, neutral, and objective);

however, we sampled only from the positive and negative tweets. Where QCRI set comprised seven

categories, again we only consider the positive and negative tweets. For better training, we balanced

the selected samples. Table 7 shows number of samples we used from each dataset. After being

combined together, we preprocess all tweets to remove non-arabic letters (e.g. handle names and

mentions) and special characters (e.g. urls), we preserve the hashtags and emoticons however. The

average number of tokens (words) in each tweet is 8.5.
44http://www.goodreads.com
45Multi-Perspective Question Answering corpus. Based originally on English news articles. Arabic translation is

downloadable at: http://lit.csci.unt.edu/r̃ada/downloads/SUBJ/Subjectivity.MultilingualTrainingData_v2.0.tar.gz
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(a) Sentiment of ASTD-ArabicTwitter-QRCI dataset

(b) Sentiment of LABR book review dataset

(c) Subjectivity of MPQA Arabic dataset

Figure 20: Learning curves of NaïveBayes and SupportVectors on Sentiment and Subjectivity
datasets.
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Training Classifiers

We consider the sentiment task as a standard binary classification. Thus, we run our experiments on

six different binary classifiers with the three datasets. Table 9 include the full list of the classifiers

with the performance of each. We use the implementations of [27] in all our classification experiments.

We run all classifiers under same training conditions and we perform a 10-fold cross-validation with

data split 90% train and 10% test. Classifiers performance will eventually determine the quality of

our word representations. Although we do not attempt to tune classifiers for better results, SVM

classifier and logistic regression classifier performed better than others in most our of baseline results.

Features representation

In one way or another, methods that use manually-extracted features rely on sparse representations;

in which each feature (e.g. words or POS tags) is its own unique dimension. In contrary to that, we

represent each feature as a fixed-size dense vector. For each input sample, we obtain its feature vector

by averaging the retrieved embeddings of that sample. Depending on the quality of the embeddings,

similar features will end up having similar vectors. And here where the “powerful” key idea of the

dense representations comes, generalization [40]. This enables our model to map (represent) unseen

samples to similar feature vectors of those in the training set.

Table 8: Methods performance compared on the MPQA subjectivity of Standard Arabic.

Method Prec. Rec. F-Score MAcc

Banea et al. [16] 72.30% 71.13% 71.30% 72.22%

Mourad et al. [75] 78.10% 75.70% 76.05% 77.20%

Our word embedding method 79.95% 72.67% 76.14% 77.87%

Results

Since our main focus is on the quality of the embeddings, we do not attempt to tune the classi-

fiers parameters. Hence, we run classifiers with the simplest configurations possible (i.e. default

parameters). Figure 20 shows a comparison between the training of Naïve Bayes classifier and SVM
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classifier over the three datasets. From the learning curves, we can clearly notice that NB classifier

will not benefit from adding more training data; since it converges quickly even with the small twitter

dataset. Whereas in the case of SVM classifier, as we see in fig. 20 (a), there is a room to further

improve our results by increasing the size of twitter dataset.

The detailed performance of all classifiers on each of the three datasets are reported in Table 9

and figure 21. For the purpose of method comparison, we follow the conventions in reporting our

classifiers results. We use the measures recall, precision, F-measure, and macro-accuracy which

correspond to Rec., Prec., F1, and MAcc respectively.

Comparison with other methods

For a fair comparison, we use the same dataset46 and task reported in the papers that we compare

our work with. Table 8 shows our results on the subjectivity classification task compared to top

reported work [16, 75] on the Standard Arabic dataset MPQA. Both [16] and [75] use hand-crafted

features to achieve their results. The improvement in the latter method is attributed to POS tagging

and word stemming they use. As we see in the table, our method achieves a slightly better accuracy

than both of the other two. Though, we think, we still could improve upon our result should we use

a larger training dataset, as we see from the learning curve of SVM in fig. 20 (c).

Conclusion

We have introduced neural word embeddings as an alternative of hand-crafted features for Arabic

sentiment analysis. We exploit state-of-the-art word representations method to compute continuous

vector representations of Arabic words. For the purpose of this work, we have built a large Arabic

corpus to generate word representations. In our classification experiments, we relied solely on the

dense representations of our embedding as the source of features; and yet we achieve a significant

performance in compare to existing techniques. Our results showed that such a simple yet powerful

method is enough to achieve state of the art performance. This should encourage research in the

application of Arabic sentiment analysis to adapt more future-promising techniques. To further

contribute to research in this area, we release our code and data used in our experiments.

In future work, we hope to compare the impact of different embedding methods (e.g. GloVe and skip-

gram) on the performance of the classifiers. We also hope to see some clear and specific techniques
46For our comparison, we were able to get MPQA dataset only. Unfortunately, we could not obtain the other dataset

“ArabSenti”; although we have contacted the original authors.
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(a) ASTD-ArTwitter tweets

(b) LABR book reviews

(c) MPQA Arabic articles

Figure 21: Classifiers ROC on each dataset.
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Table 9: Classifiers and their scores on each dataset. (Note: Rec., Prec., and MAcc. scores are the average of
both positive and negative classes).

Classifier

Dataset Measure LinearSVC Rnd.Forest GaussianNB NuSVC Log.Reg. SGDClassifier

ASTD-ArTwitter-QRCI
(Sentiment)

Rec. 74.19% 71.43% 58.53% 76.50% 77.42% 75.58%

Prec. 82.14% 75.98% 76.97% 83.00% 81.16% 82.00%

F1 77.97% 73.63% 66.49% 79.62% 79.25% 78.66%

MAcc. 78.80% 74.17% 69.86% 80.21% 80.21% 79.53%

LABR-book-reviews
(Sentiment)

Rec. 81.48% 80.23% 50.06% 81.73% 82.60% 88.74%

Prec. 80.27% 79.04% 71.17% 80.82% 80.59% 73.17%

F1 80.87% 79.63% 58.78% 81.27% 81.58% 80.20%

MAcc. 81.27% 80.05% 64.85% 81.69% 81.88% 78.60%

MPQA-Arabic
(Subjectivity)

Rec. 72.67% 70.28% 58.57% 72.02% 77.87% 81.13%

Prec. 79.95% 77.70% 75.42% 75.42% 78.30% 71.80%

F1 76.14% 73.80% 65.93% 75.03% 74.71% 75.40%

MAcc. 77.87% 76.65% 71.16% 77.60% 75.66% 75.60%

for evaluating the quality of the embeddings.
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4.2 Context-Based Approach For Learning Knowledge Graph Embed-

dings

You shall know a relation by the entities it connects.

In this chapter we develop an approach for building a representation model for Knowledge Graphs.

Approach and objective

Use neural networks to build a representation model for a Knowledge Graph. Such representation

is known as Knowledge Graph Embeddings. The objective is to encode the components (i.e. entities

and relations) of a knowledge graph into continuous vector spaces, so as to simplify the manipulation

while preserving the inherent structure of the KG.

To easily grasp the proposed approach, this section is divided into four subsections. We start by

laying out the general configuration of the proposed approach in section 4.2.1; then in section 4.2.3

we dive into a detailed description of the proposed method and its algorithm. And finally we discuss

the used datasets and the validation process in sections 4.2.2 and 4.2.4 respectively.

4.2.1 Data sources and structure

Our approach uses a shallow neural network for learning distributed representations for knowledge

graphs. Hence, we will need some training data to train our model. For this purpose, the training

datasets can be either unstructured natural language sentences (where we infer relations between

entities), or structured relational databases (where relations and entities are explicitly identified).

In this dissertation work we use the latter, which is more common for learning relational representa-

tions. A structured database is called knowledge base when it is intended to convey commonsense

knowledge (knowledge about everyday life) or expert knowledge (domain specific). Knowledge Bases

(KBs) store factual information as binary relationships between entities in the form of triplets. KBs

range from general (e.g. Freebase, WordNet, Wikibase, YAGO, NELL) to more specialized (e.g. Ge-

neOntology).

In mathematics, a binary relation is a set of ordered pairs of objects. Pairs that are part of the set

are said to have a relation, or no relation otherwise. In the context of AI, a relation is considered to

be a sentence in a syntactically simple and highly structured language. In which the relation takes

the role of a verb, while two arguments are its subject and object. These sentences are expressed
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as a triplet of tokens: (subject, verb, object)47, with the values: (entityi, relationk, entityj).

For example, to express that an engine is part of a vehicle, we could define the relation partOf with

the two entities engine and vehicle as the triplet (engine, partOf, car).

Let E be the set of all entities in a domain and R be the set of all relation types, a binary relation

given by Rr ⊆ E × E is the subset of all pairs of entities for which the relationship is true.

Link prediction is a prominent problem in knowledge bases, where the goal is to predict missing, or

incomplete, links (see figure 3). Learning efficient embeddings for triplets can be exploited for better

KB completion. In the following section, we dive into detailed description of the proposed approach

for learning such embeddings.

4.2.2 Data collection and description

Our experiments are based on two benchmark datasets WordNet [72] and Freebase [22]. WN18:

WordNet is a large lexical database of English that groups words into synonyms (or synsets) and

provides lexical relationships between words. It is designed and maintained manually by professional

linguists. WN18 datasets is a subset of WordNet. Table 12 show some example triplets from this

dataset. FB15k: Freebase is a large knowledge base with general facts about the world; it contains

around 1.2 billion triplets and more than 80 million entities. It is harvested automatically from web

sources such as wikipedia, and MusicBrainz.

Both of WN18 and FB15k are subsets from their original larger datasets. They were preprocessed

and prepared specifically for relation embeddings task by [24]. Further, they are used heavily in

many similar work. This will make it easier to evaluate how well our model perform compared to

other models. See table 10 for the statistics of these two benchmark datasets.

Table 10: Statistics of the experimental datasets we use.

DATASET entities relationships total triplets (facts)
WN18 40,943 18 151,442
FB15k 14,951 1,345 592,213

Table 11: Relation type frequencies in WN18

relation freq

_hyponym 34832
_hypernym 34796

_derivationally_related_form 29715

47Some sources use the RDF standard for representing facts (subject, predicate, object)
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relation freq

_member_meronym 7402
_member_holonym 7382

_has_part 4816
_part_of 4805

_member_of_domain_topic 3118
_synset_domain_topic_of 3116

_instance_hyponym 2935
_instance_hypernym 2921

_also_see 1299
_verb_group 1138

_member_of_domain_region 923
_synset_domain_region_of 903
_synset_domain_usage_of 632

_member_of_domain_usage 629
_similar_to 80

Table 12: Sample KB triplets for “molecule” entity in WN18

head relation tail

__radical_NN_1 _part_of __molecule_NN_1
__physics_NN_1 _member_of_domain_topic __molecule_NN_1

__molecule_NN_1 _has_part __atom_NN_1
__unit_NN_5 _hyponym __molecule_NN_1

__chemical_chain_NN_1 _part_of __molecule_NN_1
__molecule_NN_1 _hypernym __unit_NN_5
__chemistry_NN_1 _member_of_domain_topic __molecule_NN_1
__molecule_NN_1 _synset_domain_topic_of __physics_NN_1
__molecule_NN_1 _has_part __radical_NN_1
__molecule_NN_1 _hyponym __supermolecule_NN_1

__atom_NN_1 _part_of __molecule_NN_1

4.2.3 Hybrid context-based training algorithm for relational data

Based on neural networks approach for statistical language modeling, the proposed method is in-

spired by the Continuous Bag-Of-Words model for training word vectors (see word embedding in

section 2.2). The core difference is that in our case we treat each triplet as an individual word.

Provided a knowledge base “as the training data”, we learn distributed representations for enti-

ties and relations by considering each triplet as training example; and then maximizing a training

objective that capture their joint distribution.

• The basic idea is to apply the Distributional Similarity Hypothesis on relational data (knowl-

edge bases).

• We treat each triplet in the training set as a target training example (just like how a target

word is treated in CBOW model). Its context is formed as follows:
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• The context will be other training triplets from the training set that has the same relation

type as the target triplet. Since, we adopt negative sampling method for the training, a context

is sampled such that it contains true and negative training examples. Such that:

– true samples: correct triplets from the training data where each triplet has the same

relation type but different entities.

– negative samples: corrupted (not true) triplets with same relation type, but different

entities drawn randomly from the set of training entities E .

For example, given the training examples in table 13, we have the set of entities E =

{e1, e2, e3, e4, e5, e6}, and the set of relations R = {r1, r2, r3}. Assuming the context “win-

dow” size is two and the current training target is the triplet (e1, r2, e3), then its context would

be the triplets (e6, r2, e4) and (e2, r2, e5).

Table 13: An example training dataset.

training examples - triplets

(e3, r1, e2)
(e1, r2, e3)
(e1, r3, e4)
(e2, r2, e5)
(e6, r2, e4)
(e3, r1, e6)
(e5, r3, e3)

With these conventions, our objective is to maximize the log-likelihood of each triplet given its

context:

1
R

R∑
i=1

∑
j∈C

log p(tr
i |tr

j) (6)

where, R is the total relation types in the training examples. C is the context of the triplet ti,

such that the relation type in ti is the same relation type in tj . And t is a compositional vector

representation of the triplet, given by:

tr = d(es, rv, eo) = ||es + eo − rv||l1/2 (7)

where, d is the dissimilarity measure we use in the score function48. And es is the subject entity and

eo is the object entity ∈ E and rv: relation type ∈ R.
48we use a similar distance function as the one described in [24].
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The probability of a relation given its context triplets p(tr
i |tr

j) can be calculated using softmax as

follows:

p(ti
r|tj

r) = exp(tj
r · ti

r)∑
tk

r∈R exp(tr
k · tj

r)
(8)

For optimizing our objective, i.e. learn vector representations of the entities and relationships jointly,

we use the training algorithm 8 along with the well established Stochastic Gradient Descent “SGD”

to update the model’s parameters. The proposed algorithm is a hybrid of two published work. That

is our training method is inspired by CBOW of [68], while the score function and its optimization

is adopted from [24].

Algorithm 8 Our Contextual Knowledge Graph Embedding algorithm for semantic relations into
a low-dimension vector space

Input : Triplet set T = {(h, r, t)} i.e. entities (h, t) e ∈ E and relation r ∈ R.
Params: dimension d, learning ϵ, window w, epoch n, and batch size b
Output: Embedding matrices E ∈ R|E|×d and R ∈ R|R|×d

initialize r ← uniform (− 6√
d
, 6√

d
) for r ∈ R

initialize e← uniform (− 6√
d
, 6√

d
) for e ∈ E

while epoches do
Tbatch ← sample (T , b)
S ← ∅ ; // training set
for t in Tbatch do

context will return w true triplets with same relation type r
C ← context (t, Tbatch, w) ; // t is a triplet (e1, r, e2)
S ← S

∪
{(t, C)}

end
update weights using SGD w.r.t ϵ and loss function

∑
t∈S ∇ log p(t|t[C])

end

As the computation of ∇ log p(ti|tj) is proportional to R; the cost of computing the normalization

part for every training example (i.e. the denominator part of softmax function, see equation 8) can

be too expensive. So in practice, an alternative such hierarchical softmax or negative sampling

method can be used instead of softmax, as described in [71]. Also in a very recent work, in [44] they

have proposed “Adaptive Softmax” as an efficient approximation based training method which cut

the linear dependency on the vocabulary size.

4.2.4 Validation process

To evaluate the performance of our approach, we follow the ranking evaluation protocol described

in [24]. For each test triplet, the head entity will be removed and replaced by each of the entities
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from E . The model will then computed the predictions of these corrupted triplets and sort them

in ascending order. The same procedure is repeated again but with removing the tail entity. Then

take the average of these is prediction ranks. The common metrics used for this process includes

hits@1, hits@3, and hits@10.

This evaluation procedure is used to evaluate link prediction tasks; where it measures the portion of

correctly predicted triplets from a test set (i.e. the portion of test triplets in which the target entity

was predicted correctly). The same evaluation protocol is adopted in literature in many related

work [109, 82, 78, 79] which makes comparing the accuracy of our results viable. To facilitate a fair

comparison, we are using the same datasets used in the mentioned papers.

To measure the quality of the relations ranking, we will also report the mean reciprocal rank (MMR):

MMR = 1
|Q|

|Q|∑
i=1

1
ranki

(9)

which is a commonly used measurement metric in information retrieval tasks.
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5 Experimental Evaluation and Validation

In this chapter, we introduce our experimental tests where we 1) did extrinsic and intrinsic eval-

uations to determine the accuracy of embeddings models, and 2) applied query answering system

based on knowledge graphs to assess the performance of knowledge graph embeddings.

The following section is based on our published journal paper [11].

5.1 Evaluating the Quality of the Embedding Vectors

Abstract. We consider the following problem: given neural language models “embeddings” each of

which trained on an unknown data set, how can we determine which model would provide a better

result when used for feature representation in a downstream task such as text classification or entity

recognition?

In this paper, we assess word similarity measure through analyzing its impact on word embeddings

learned from various datasets and how they perform in a simple classification task. Word represen-

tations were learned and assessed under the same conditions. For training word vectors, we use the

implementation of Continuous Bag Of Words described in [68]. And to assess the quality of the vec-

tors, we apply the analogy questions test for word similarity described in the same paper. Further,

we introduce a new metric to measure the retrieval rate of an embedding model. It measures the

percentage of missing words in the model. We call it Average Retrieval Error.

We observe that scoring a high accuracy of syntactic and semantic similarities between word pairs

is not an indicator of better classification results. And that can be justified by the fact that a

domain-specific corpus contributes to the performance better than a general-purpose corpus. We

also discover that word retrieval average of the matched vocabulary in a model does not affect the

overall performance as well. We think one way to enrich this metric is by introducing word-wise

weights. For reproducibility, we release the scripts and results of our experiment49.

Introduction

Language modeling is the crux of the problem in Natural Language Processing. Recently, neural

language models have outperformed the traditional language model approaches such as n-gram. The
49https://github.com/iamaziz/embed-eval
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superiority of the neural methods lies in their capability to overcome the curse of dimensionality

problem while, simultaneously, capturing different similarities between words [43].

Neural language models learn distributed representation for each word in the form of real-numbers-

value vectors, which allows similar words to have similar vectors. Such sharing is an important

characteristic that enables the learning model to treat related words similarly and, hence, the ability

to generalize. These word representations are usually known simply as Word Embeddings.

Nowadays, word embedding is the standard approach for feature representation in many NLP tasks.

Traditional feature representation methods, such as bag-of-words and its TFIDF, rely on hand-

crafted feature extractor, time-consuming, and domain-specific. Hence, embedding based techniques

provide a better alternative for automating many tasks in language modeling and NLP.

Among these techniques, distinctly, context-predicting semantic vectors have proven their superiority

to the count-based ones [18]. Context-based vectors make more emphasis on the word (and its

context) and other words and contexts.

Popular word vector learning methods are introduced in [68, 84, 66] and have had gained great

attention since then. From these methods, learning continuous word embeddings using skip-gram

and negative sampling is the most common approach for building word vectors [63]. This method

was described and introduced in [68].

However, since vectors training occurs in an unsupervised fashion; there is no accurate way to esti-

mate the quality of the vector representations objectively. Several extrinsic and intrinsic evaluation

methods have been discussed [15]. However, until the date of this writing, there is still no reliable

method for comparing the quality of different embedding models. So, this is still an open question.

Commonly, the quality can be assessed using the word similarity task, which is a test with a set of

similarity analogy questions [68].

Nevertheless, using the current word similarity evaluation method, 1) word similarity accuracy, and

2) having more vocabulary in the model does not result in better performance in the downstream

task.

From experiments, we show that scoring high accuracy in word similarity measure questions does

not imply better performance in the downstream task. Our finding is in line with the observations

of [35]. Therefore, we observe that the accuracy of word similarity measure is not, necessarily, an

indicator for the usefulness of the word embedding model. In this paper, we explain and justify this

claim based on the observation of our experimentation results.
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For instance, we show that GoogleNews embedding model has the following two advantages over

IMDB model. First, it scores better word similarity accuracy (74.26%) in comparison to IMDB’s

(23.71%); second, GoogleNews contains 3 million vocabulary while IMDB contains around 19,000.

Despite these advantages of GoogleNews, the classifiers’ performance was worse with GoogleNews

than with IMDB.

The rest of the paper is structured into the following parts: related work, our experiments, discussion,

future work, and finally the conclusion.

Related Work

We approached related work in the following manner. First, we investigated what it takes to build

quality embedding models and which components to consider. We then analyzed similar work for

evaluating word embeddings using extrinsic and intrinsic methods. We also reviewed the available

current work on building domain-specific embeddings. And finally, we look into work that focuses

on the syntactic and semantic similarities between words.

Training elements such as the model, the corpus, and the parameters have been analyzed in detail

in [57]. They observed that the corpus domain is more important than its size. This explains our

results where the smaller domain-specific corpus (IMDB) achieved better results than the much

larger general-purpose corpus (GoogleNews).

We reviewed papers on evaluating word vectors’ quality and model accuracies. Existing evaluation

methods fall into two types: intrinsic and extrinsic evaluation. In the intrinsic evaluation, the goal

is to directly assess the quality of word vectors in the hope that it will reflect on the performance of

downstream tasks. So, synthetic metrics are proposed to test the semantic and syntactic similarities

between words.

For example, a pre-selected set of query terms is used to estimate words relationships. Each query

denotes two pairs of “analogically” similar words (e.g. big to bigger as small to smaller “syntactic

similarity”, or Tokyo to Japan as London to England “semantic similarity”). Then, such queries

can take the form of questions e.g. “What is the word similar to small in the same sense as bigger

is similar to big?”. To query the model, a question is formulated in an algebraic expression as

follows: answer = vector(‘bigger’) - vector(‘big’) + vector(‘small’). This method was first proposed

in [68]; and published with a set of around 20 thousand syntactic/semantic questions. It is fast

and computationally inexpensive, however, there are problems associated with this technique [35].
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Further, other evaluation techniques have been proposed to reduce bias [91]. In such methods, they

directly compare embeddings with respect to specific queries.

While in the extrinsic evaluation, we indirectly evaluate word embeddings. In other words, we use the

embeddings as input features to a downstream task and measure the performance metrics specified

to that task [91]. For instance, when the task is text classification, we would use the embeddings

to represent words in the text. In some approaches, they applied extrinsic evaluations to learn

task-specific embeddings [98].

Finally, a thorough investigation and survey covering the current evaluation methods have been

discussed in [15].

Building Word Embeddings

Data Collection and Exploration

In this section, we describe the data sources and texts we used for training the embedding models.

We started with two well-known corpora. The first one is text8, a standard corpus50 used in NLP

community which has around 100MB of cleaned English text of a Wikipedia dump from 2006, and

the second one is the Large Movie Review Dataset (or IMDB51). IMDB contains 100 thousand movie

reviews prepared for sentiment classification problems. Later on, we will use this same dataset in

our classification experiment; we are aware this may cause bias in the datasets, further discussion

to follow later.

As a way to augment our data, we created a new hybrid corpus by concatenating the above two

corpora; we call it text8-imdb. This allows us to compare the results of two models and their hybrid

to see how they may affect one another. Later on, in the classification section, we will see that imdb

achieved the best among the three. This is a bit surprising, because its average retrieval error (1.46)

was higher than that of text8-imdb (0.99); though it still achieved better results.

For additional insights about the data, we explored each corpus for statistical information “meta-

data” such as number of the unique words, the total count of characters, and the total count of

words. See Table 14 for more details on these metrics.

50http://mattmahoney.net/dc/textdata
51http://ai.stanford.edu/ amaas/data/sentiment/
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Table 14: Statistics of the training text (corpus).

Corpus char count word count unique words

imdb 125,882,839 23,573,192 144,841
text8 100,000,000 17,005,207 253,854

We also wanted to get a better sense of the characters’ usage and their frequency in each corpus.

Figure 22 illustrates some visualization of the usages. It shows the frequency of the 26 English letters

usage in each of the three corpora.

Figure 22: Letters frequencies as they appear in text8 and IMDB

Model Training and Parameters

Following [68] approach for learning vector representations of words, we trained three models using

three various corpora. In the first one, we merged the entire set of 100,000 movie reviews [65] into

one big text file, we will refer to the vectors “model” generated from this text as imdb. And for the

second model, as mentioned in the previous section, we used a 100 MB of cleaned Wikipedia English

text known as text8, we will call the model from this corpus: text8. The third “hybrid” model is

the combination of the two above files (as one big text file). We refer to this model as imdb-text8.

The fourth model, in our experiment, is GoogleNews. A pre-trained model published in [68].

With the exception of GoogleNews52, all the models were trained using CBOW architecture with the

same hyper-parameters. We used the original (C language) implementation of word2vec toolkit53.

After compiling and building the software locally, we use the following command to train the models:
$ ./word2vec -train $CORPUS \

-output $OUT \
52It was not clear to us which exact parameters were used. See: Mikolov’s response in word2vec-gmail-group
53https://github.com/tmikolov/word2vec
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-cbow 1 \
-size 300 \
-window 10 \
-negative 25 \
-hs 0 \
-sample 1e-4 \
-threads 20 \
-binary 1 \
-iter 15

Exploring the Models

After we built the models, we decided to evaluate their response to the analogy question test sets.

The table below displays the number of the learned “vectorized” vocabulary in each model. The

table also shows the number of questions seen in the model, along with their average similarity

accuracy. These results were obtained based on $ ./word2vec/compute-accuracy script in the

same toolkit. For faster approximate evaluation, we used the recommended threshold of 30,000 to

reduce vocabulary.

Table 15: Embedding vectors compared.

Embeddings # vocab. dim. # quest. seen avg. sim. acc.

imdb 53,195 300 10,505 33.41%
text8 71,291 300 12,268 53.60%

imdb-text8 94,158 300 12,448 59.89%
GoogleNews 3M 300 13,190 76.85%

Determining Models Accuracy

To conduct a fair comparison between models, we introduce the Average Retrieval Error

“AVG_ERR” as a way to estimate the vectors’ availability in the given model. It is the total

number of missed words (i.e. words that queried but not available in the embedding model) over

the total words queried. See formula 10 below:

∑n
i=1 Q(ti − ri)

n
(10)

Where, Q is a query to the model which returns the vectors for a set of given tokens (words), n is

the total number of the queries made, t is the number of tokens in query i, and r is the number of

retrieved (found) vectors for query i.

For simplicity, we can rewrite 10 as:
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Avg. Retrieval Error =
∑n

i=1 mi

n
(11)

And m is the number of missed (not found) vectors for query i.

In Figure 23, we show the number and percentage of analogy questions seen in the model (with a

threshold of 30K) for word similarity task.

Figure 23: Embeddings results on the word analogy task (out of the total 19544 questions), fig. a.
is the number of questions seen and fig. b. is the percentage of the questions seen.

We also recorded the accuracy for each topic of the 14 question type categories. Instead of using a

huge table with many numbers, we decided to illustrate the result in figure 26 to quickly grasp the

topics’ results.

Figure 24: Results on the topics accuracy from word analogy task

Finally, in figure 25, we show the overall accuracy results for every model; such as the average score
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for all topics and density of topics’ results.

Figure 25: The overall accuracy on each embedding model on all the 14 topics in the analogy test

Despite the scored word similarity accuracy of the IMDB model, its classification result is quite

impressive. We will see that in the next section; where the learned word representations reflect a

great deal of the actual semantics.

Applying Embedding Models for Binary Classification

In this section we evaluate the performance of each embedding model through a downstream task.

Our task is a simple binary classification for sentiment analysis problem.

Supervised Training Dataset

To train the sentiment classifiers, we used the popular benchmark IMDB-50K movie reviews dataset.

It was introduced by [65], and available to download54. The dataset, which was prepared specially

for binary sentiment classification, contains 25K highly polar movie reviews for training and 25K

for testing. The sentiment of reviews is balanced in both data sets, i.e. one half is positive, and the

other half is negative.

Additionally, IMDB has another unlabeled dataset contains 50K reviews which we used in training

our word2vec models. This dataset, however, was not used for training the binary classifiers.

Representing Reviews

After preprocessing the review text, the vector representation of each token “word” is then retrieved

by querying the embedding model. If a token is not found in the embeddings’ vocabulary, its
54http://ai.stanford.edu/~amaas/data/sentiment/

http://ai.stanford.edu/~amaas/data/sentiment/
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representation will be ignored. That’s where the concept of Average Retrieval Error comes from. The

more tokens missed, the higher the average error will be. When all the review’s tokens are processed,

the review then will be represented as a fixed size feature vector by averaging the representations of

all tokens.

Training Classifiers Results

We trained five simple binary classification algorithms Perceptron, Support Vector Machines,

Stochastic Gradient Descent, Logistic Regression, and Random Forest. We used the built-in

implementations of these algorithms provided by the scientific toolkit library “scikit-learn”55. As

for parameters tuning, we applied the default parameters in scikit-learn.

To know the complete set of parameters for each classifier, one can refer to the log file we included

with our project code.

In table , we show the performance of each classifier with each of the respective four embedding

models.

Table 16: Vocabulary Size, Average Retrieval Errors, and Classifiers Performance with each model.

Model Vocab. AVG_ERR Percept. SVM SGD LogReg RForest

imdb 53,195 1.46 84.29% 89.20% 86.49% 89.19% 84.39%
text8 71,291 4.62 76.62% 81.17% 75.44% 81.22% 73.88%
imdb-text8 94,158 0.99 80.11% 89.12% 85.50% 89.08% 83.96%
GoogleNews 3,000,000 28.04 78.94% 86.14% 82.89% 86.08% 80.16%

See figure for a better visual comparison of the scores. We can see that the classifiers scored better

with IMDB embedding model, despite that GoogleNews model has better accuracy in term of analogy

query test. We can also notice that IMDB is still better than its hybrid model text8-imdb which

intuitively should enrich the model’s representation capacity by adding more vocabulary (which can

be verified by inspected the average retrieval error decrease from imdb to text8-imdb). Reducing

AVG_ERR did not improve the classifiers; but on the contrary, combining text8 degrades imdb’s

performance.

Avoiding bias in IMDB

The training and testing datasets are initially the same corpus that we use to generate imdb embed-

dings. Thus, and to make sure that our testing is not biased, we used another sentiment dataset

(i.e. other than IMDB reviews) to test the performance of the classifier. The dataset contains 7086
55https://scikit-learn.org
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Figure 26: Sentiment classifiers score with each embeddings. a) embedding models wise results, and
b) classifiers wise results.

labeled (positive/negative) training sentences and 33052 unlabeled sentences provided for prediction

problems. We used the training data for testing our classifiers, as we were not able to acquire the

actual labels of prediction set. As expected, the highest scores of the classifiers still achieved with

imdb embeddings.

Summary

Finally, and to summarize and aggregate all results and scores together in one place, we took the

average score of all classifiers achieved with each embedding model. These aggregates are displayed

in table 17.

Table 17: Summary on the final results for embedding models’ accuracy and classification perfor-
mance

Embeddings vocab. size AVG. retrieval err. AVG. similarity acc. AVG. sentiment score

imdb 53,195 1.46 33.41% 86.73%
text8 71,291 4.62 53.60% 77.74%
imdb-text8 94,158 0.99 59.89% 85.55%
GoogleNews 3M 28.04 76.85% 82.79%
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Discussion

Model Accuracy and Classifiers Performance

Why IMDB word embedding model is better than GoogleNews embedding? Learning task-specific

vectors through fine-tuning offers further gain in performance. See static vs. non-static representation

(section 4.2 of CNN sentence classification [55]).

So, for example, you’d expect words like “amazing” and “awful” to be very far apart whereas in

word2vec they’d probably be closer because they can appear in similar contexts 56.

In the accuracy evaluation, IMDB model scored 22.94% on the 8182 test cases found (out of the

19544 test cases); while the GoogleNews model scored 74.26% on the 7614 test cases found. Although

the IMDB model scored less, the sentiment classifiers performed better with it in comparison to the

other model.

Things to notice

Although we were not concerned with improving the overall performance of the classifiers, there are

several things to consider that can improve the classifiers’ results.

For example, one can apply the ensemble approach, described in [67], that combine multiple base-

line models rather than relying on a single model. Further improvement might be introduced by

describing the review feature differently, instead of averaging the vectors [59].

Also, while training the vectors, careful choice and tuning of the hyper-parameters could bring much

gain to the model accuracy [61]. Finally, one may consider words dependency instead of relying

solely on linear contexts [45].

Missing data

When a given token (of a sentence) is not available in the embedding model, its vector value is

ignored. However, it is counted toward the sentence length when we take the overall average. Can

we do something else about this? e.g. 1) substitute (compute) its value as the average of other tokens

in the same review, or 2) do not count it in review length, or 3) apply other known techniques for

handling NaN values.
56see: cnn-text-classification-tf Denny Britz’s blog
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Future Work

We can think of three possible ways to further extend this work. Firstly, expand the models range for

broader comparison. For instance, one can integrate more (other) pre-trained models such as GloVe,

ELMo, BERT to use in both experiments; embedding quality assessment, and binary classifiers.

Secondly, and to enrich the procedure of classification comparison, one can try another approach to

aggregating the sentence features (other than averaging vectors for sentence representations). Finally,

in this work, we introduced the Average Retrieval Error “AVG_ERR”. We think this measure can

be further improved by adding weights to words in the sentences. For example, stop words, and

common vocabulary can have less weight than those that are more specific.

Conclusion

We discussed the problem of choosing between multiple word embedding models. To this end, we

made the following contributions. We built and trained three different embeddings models based on

published data sets. We, then, implemented two types of evaluation methods on the models. For

the intrinsic evaluation, we applied the word similarity measure method; while we did the extrin-

sic evaluations through a binary classification problem. We presented the results of performance

comparisons over four different embedding models. We also introduced a metric for measuring the

model’s retrieval rate to the number of queries made. For reproducibility, we released the models,

data, and scripts used in our experiments.

We have shown that scoring high accuracy in the Word Similarity Measure test does not imply

better performance in the downstream task. In other words, if a model A achieves a higher score

than model B in the analogy question test, this does not mean A will perform better than B in a

downstream task. This finding is in line with observations from related work. We also observed

that the model’s coverage of vocabulary (i.e. vocabulary size) is not as essential as containing a

domain-specific dictionary.
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5.2 Applying KGE for Answering Fact-based Questions

Question Answering (QA) is a popular task in natural language processing (NLP). It is a generic

framework for answering questions about specific information, for example weather status, soccer

statistics, or factual knowledge. In the early days of artificial intelligence, systems used two ma-

jor paradigms of question answering: information-retrieval-based and knowledge-based [53].

This work relies on a method for representing a set of pre-defined knowledge facts (i.e. knowledge

graphs) into vector space models (VSMs). VSM is an excellent way to represent text in a machine-

interpretable manner.

The embeddings of knowledge graphs can be utilized in several search-related applications such as

search engines, dialog systems (e.g. question-answering and chatbots), and social network applica-

tions. In this section, we build a factoid question-answering system that leverages knowledge graph

embeddings.

Question answering can be “open-domain” or “closed-domain”, in our system we focus on a specific

“closed-domain” factoid type of questions based on the prior knowledge included in the FreeBase

knowledge base. In the following, we describe our Q/A system and its domain in details.

5.3 KGE QA System

In this section, we introduce our Factoid-question answering systems. We call it Factoid-Question

Answering System Based on Knowledge Graph Embeddings; for short KGE QA.

5.3.1 Algorithm and Application Screenshot

KGE QA Algorithm

In this section, we introduce the pseudocode for the KGE QA algorithm in 9. Also, since we built a

web app for this system, we include sample screenshots from the main user interface. The screenshots

describes information about the domain knowledge, how to ask questions, and sample questions and

answers.
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Algorithm 9 KGE QA Algorithm for answering factoid-questions
1 read the input question text
2 preprocess and tokenize the input string
3 remove stopwords
4 join True sub_words
5 for each token
6 if the token is a True key (i.e. in either ENT/REL models):
7 label its type as is and
8 continue to the next token
9 generate a vector for the token

10 find its closest neighbors in our (ENT/REL) models:
11 get top n closest ENTs and top n closest RELs (cosine similarity)
12 if the similarity distance (of the closest neighbor) is not close enough (i.e. less than a threshold)
13 decide the closest neighbor by taking the max of (SequenceMatcher + CosineSimilairty) / 2
14 if the distance of the closest matched neighbor is still not close enough (i.e. use a threshold 0.2)
15 label the token's type as type OTHER i.e. neither ENT nor REL
16 remove non ENT/REL tokens (i.e. 'OTHER') from the input tokens
17 swap the tokens' WORDS from the "INPUT" words to "ENT/REL" words in our models
18 form incomplete triplet pairs (head-relation) from the labeled tokens
19 pick the first True pair
20 answer is the tail(s) of closest triplet(s) in our KG dataset

Figure 27: The main user interface of the KGE QA system
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Figure 28: Screenshot of the usage information

Figure 29: Example1: uncleaned FB15K dataset: example question and answer
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Figure 30: Example2: sample question and answer

Figure 31: Example2: visualizing the closest relations based on the input question
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Figure 32: Example2: visualizing the closest entities based on the input question

5.3.2 How we build ENT and REL models

Given a knowledge graph facts in triples format, our objective is to build two separate embedding

models. One model is for entities and another model is for relations. We start by extracting the set

of all entities (both heads and tails) in the triples as well as the set of relations.

The vectors are generated using a pre-trained embedding model. Literature contains var-

ious benchmark pre-trained models. We tested on few popular embedding models pro-

vided by PyMagnitude57, we settled to using the heavy GoogleNews with 300 dimensions

(GoogleNews-vectors-negative300.magnitude). It produces good results and, at the same time,

it is relatively easier to load and handle using pymagnitude toolkit. It takes between eight to ten

minutes to build ENT.vec and REL.vec for a dataset with around 80K triplets. See fig 33 for the

complete process of building those two models.

5.3.2.1 Example for building new KGE models (ENT/REL)

Starting by passing the knowledge graph dataset (csv file with 3 columns h, r, and t), we can build

KGE for a new KG dataset either from the CLI or UI (streamlit interface).
57https://github.com/plasticityai/magnitude#pre-converted-magnitude-formats-of-popular-embeddings-models
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Figure 33: Workflow for building ENT.vec and REL.vec models with an example

Here is an example from command-line
$ python -m kgeqa.build_new_model -csv data/sample1_KG.csv
Started a model builder for data from: data/sample1_KG.csv
Building a new embedding model for 15 tokens ..
Done. See output: data/ENT.vec
Building a new embedding model for 7 tokens ..
Done. See output: data/REL.vec
Converting models to .magnitude format ..
Loading vectors... (this may take some time)
Found 15 key(s)
Each vector has 300 dimension(s)
Creating magnitude format...
Writing vectors... (this may take some time)...
Successfully converted 'data/ENT.vec' to 'data/ENT.vec.magnitude'!...
Successfully converted 'data/REL.vec' to 'data/REL.vec.magnitude'!
Done.

Or from the user interface (UI). See fig 34.

Figure 34: Example for building new KGE models from the UI
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Stdout logs for creating new KGE models from the UI:
Started a model builder for data from:

/Users/Aziz/Dropbox/thesis/code/kge_qa/lab/all_domains_cleaned.csv
Building a new embedding model for 7636 tokens ..
Done. See output: data/ENT.vec
Building a new embedding model for 32 tokens ..
Done. See output: data/REL.vec
Converting models to .magnitude format ..
Loading vectors... (this may take some time)......
Cleaning up temporary files...
Successfully converted 'data/ENT.vec' to 'data/ENT.vec.magnitude'!
Each vector has 300 dimension(s)......
Cleaning up temporary files...
Successfully converted 'data/REL.vec' to 'data/REL.vec.magnitude'!
Done

Figure 35: Created new embedding models for entities and relations

Description of the generated models:

• data/ENT.vec Entity embeddings in .txt format

• data/ENT.vec.magnitude Entity embeddings in PyMagnitude format

• data/REL.vec Relation embeddings in .txt format

• data/REL.vec.magnitude Relation embeddings in PyMagnitude format

5.3.3 System description and design

When it comes to natural language, different people may ask differently about the same thing. In

other words, there are more than one way to ask the same question.

For example,

• a specific fact
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• we want to know it, so we ask about it

• but, the question might comes in various forms,

• these variations are added complexity to any question answering system

• one of the key strengths of our QA system is its ability to deal with such variations and

eliminate their factor of complexity58.

As mentioned, a key characteristic of our Q/A framework is its capability to handle all the possible

variations of the same question. In other words, any specific fact-based question (related to the

domain knowledge) might be asked in various (natural language) forms. Yet, the system should still

be able to address “subsume” those variations and get to the correct answer. For example, in Fig.

36, the first three questions are asking about See the questions 1, 2, and 3 in Fig. 36.

Figure 36: Example of CLI interface for the QA system. Same question can be asked in different
ways

Question rules and assumptions

There can be two kinds of fact based questions, open-domain and closed-domain questions. As

discussed earlier, we focus on the latter type where the expected questions fall under a specific

domain. The subsequent section of this dissertation describes our domain in details. Also, in

literature, there exists various datasets related to such kinds of questions59.

To ask a closed-domain question, a question can be expressed in any form in English language.

However, we define three rules or conditions that should be present in any input question:
58This key strength idea was inspired by a separate, but similar, project that I worked on with a team of two other

people (Yuecheng Zhu and Witold Szejgis) during our machine learning fellowship at fellowship.ai
59for example: see wikidata, factoid-questions dataset, and BuboQA

http://fellowship.ai
https://github.com/askplatypus/wikidata-simplequestions
https://github.com/brmson/dataset-factoid-curated
https://github.com/castorini/BuboQA
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1. It needs to be a factoid-based i.e. its answer is a concise fact. For example, “what is the capital

city of Iceland?”

2. It has to be about knowledge contained within the domain knowledge of our training data60

3. It needs to contain: 1) at least one entity (or its equivalent meaning) and 2) one relation (or

its equivalent meaning) from our dictionary of the KG triplets.

System design

See the fig. 37.

Figure 37: Conceptual design of the factoid QA system.

5.3.3.1 Extracting Entities and Relations from question

Our goal is to identify any true entity or relation mentioned in the input question; True means exists
60More on this in section 5.3.5.1
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in our embedding model. If we think of a question as a sequence of tokens: TOKEN1 TOKEN2 TOKEN3

..., we want to label each token’s type as either <ENTITY>, <RELATION>, or <OTHER>. We do that

based on the token’s closeness to either ENT.vec, or REL.vec models.

For example, in the question “Who wrote the movie Troy?” we would start with the raw tokens

['who', 'wrote', 'the', 'movie', 'troy']. In order to minimize the complexity, we filter

out the tokens by removing stop words and concatenating True subwords. True subwords means

when a bigram of tokens is a True key in either ENT.vec or REL.vec models; such as in the case of

['directed', 'by'] becomes ['directed_by'] since directed_by exists in REL.vec. So in that

example we end up with the filtered tokens ['wrote', 'movie', 'troy'].

Then, for each token, we find its most similar entity from ENT.vec and its most similar relation

from REL.vec e.g. model.most_similar(token). The similarity is calculated by taking the cosine

distance between the vector of token and each vector in the embedding models. For instance closest

entity to wrote is ('capote', 0.68), while the closest relation is ('written_by', 0.92); where

0.68 is the cosine similarity between the embedding vector of wrote and the vector of capote. In

which we say the token wrote is most likely to be a RELATION since it is closer to written_by.

After all tokens are labeled, we end up with the following:

LABELED TOKENS:

[('wrote', '<RELATION>'), ('movie', '<ENTITY>'), ('troy', '<ENTITY>')]

During the labeling process, each token will be associated with its closest neighboring token from

our (ENT.vec/REL.vec) models. For instance, wrote will be associated with written_by. To match

with the true triplets in our KGE model, each of the input tokens will be swapped (replaced) to its

closest true token. So, in that example, we will have the following:

SWAPPED TOKENS:

[('wrote', 'written_by'), ('movie', 'epic_movie'), ('troy', 'troy')]

Then at this stage, we have the following labeled tokens:

LABELED TOKENS:

[('written_by', '<RELATION>'), ('epic_movie', '<ENTITY>'), ('troy', '<ENTITY>')]

In the next step, we use the labeled tokens to form all the possible ENT-REL pairs as follows:

CANDIDATE PAIRS:

[('epic_movie', 'written_by'), ('troy', 'written_by')]
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We then choose the true pair based on its existence in our domain knowledge dataset. That is:

SELECTED PAIR:

(troy, written_by)

Finally, and to find the answer, we need to complete the incomplete triplet above. To do so, we use

our knowledge graph dataset to retrieve the tail(s) of any triplet that match above (head, relation)

pair.

5.3.3.2 Determining Tokens Type

Given an input TOKEN we decide its type based on its closest neighboring vector from ENT.vec and

REL.vec as below. First find the closest neighbors from both models:

neighbors = closest_entities(token) + closest_relations(token) (12)

Where closest_entities is just the model.most_similar(token). Then, we want to decide which

one of the neighbors is actually the closest as follows:

closest_neighbor =

max(similarity(neighbors)), if similarity ≥ MAX_CONF IDENCE

max( SM(neighbors)+similarity(neighbors)
2 ), Otherwise

(13)

Where MAX_CONFIDENCE and MIN_CONFIDENCE (in 14) are thresholds. And similarity is

CosineSimilarity and SM is SequenceMatcher. Setting values for the thresholds can be tricky, so

we need to pick those values carefully. Based on our trial and error experiments, we use the values

0.9 and 0.2 respectively.

Finally, we decide the token type as in 14 below:

token_type =

type(closest_neighbor), if similarity(closest_neighbor) ≥ MIN_CONF IDENCE

OT HER, otherwise
(14)

5.3.3.3 Workflow of the Answering Process

The following figure 38 illustrates the complete workflow of the current answering task in KGE QA.
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Figure 38: KGE QA workflow for answering a question
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Advanced answering mechanism

Provided the input question, we assume the task as a link prediction task. In other words, after

parsing the input, we will have one or more incomplete triplets. The goal, then, is to complete any

missing part in a triplet of the form (Entity1, Relation, Entity2). For instance, in the example

query in 39, we have the given (TomCurise, played_role, FighterPilot) and our goal is to

complete the unknown triplets:

Figure 39: Example query with its relevant part in the Knowledge Graph.

• (FighterPilot, role_in, ? )

• (TomCruise, acted_in, ? )

And match its resulted movie name(s) with the movie name that Tom Cruise have had acted in.

In our knowledge graph embedding, where entities and relationships are represented as a Vector

Space Model VSM, the correct answer to the query translates to completing a simple arithmetic

operation on the vectors of entities and relations:

• vF ighterP ilot + vrole_in ≈ Vcandidates

• vT omCruise + vacted_in ≈ Vcandidates
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Figure 40: Conceptual approach for finding answers.
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5.3.4 System performance and accuracy

The overall performance depends on several factors. Generally, the cleanness of the knowledge graph

dataset affects performance the most.

> HERE GOES the IRB experiment results with the analysis

5.3.5 KGE QA dataset description

Generally, the system is designed to work with any dataset as long as the dataset is structured in

the correct format. A correct format is a list of comma-separated triples of facts with the header

h,r,t. For example, assuming our knowledge graph dataset is a csv file (let’s say KG.csv), then it

should like something like this:

h,r,t

entity,relation,entity

entity,relation,entity

entity,relation,entity

...

With that in mind, the system can be used with any customized dataset for any specific domain.

However, for our testing purposes, we used a subset of a well known knowledge graph dataset called

FB15K. See section 4.2.2 and the next section for more details about this dataset.

5.3.5.1 Description of the domain knowledge “Ontology”

The objective of this section is to describe the domain knowledge of our system. In other words, the

domain and range for questions and their answers. This will make it easier to understand the kind

of knowledge that our QA system is expected to cover. And ultimately, what kind of questions can

be asked.

The SimpleQuestion dataset contains questions about FreeBase knowledge base. Each question is

labeled with the correct answer and its corresponding triplet from FreeBase dataset. Initially, we

thought of extracting a subset of these questions and consider them our target. However, we noticed

that can be more rigid and difficult to scale. Therefore, instead, we decided to extract a large subset

of FB15K dataset to be the knowledge domain of our system.

Understanding a FB15K triplet:



5.3 KGE QA System 92

Before we dive deeper, lets first recall what FB15K triplets look like. Here is an actual raw triplet

example:

/m/016h4r /music/artist/genre /m/026g51

To simplify it, lets label the three components of this triplet:

Table 18: An example of a raw FB15K triplets

head relation tail
/m/016h4r /music/artist/genre /m/026g51

Now, lets convert each component to its corresponding meaning, as follows:

Table 19: An example of FB15K triplet with meaning descriptions

triple part description
/m/016h4r kristoffer kris_kristofferson american country music singer …
/music/artist/genre Subject: music, subtopic: artist, label: genre
/m/026g51 outlaw_country subgenre country music popular late …

The entity descriptions are based on entity-to-word dataset published in [107]. The dataset is

available on GitHub61.

And simply put in English language, the above triplet would translate to:

Kris Kristofferson is an American singer who plays outlaw country music genre.

Filtering FB15K and Understanding the Domain Ontology of the filtered FB15K

dataset

First, we started filtering out FB15K dataset by selecting the set of triplets that fall under the specific

“domains” subjects that we intended to cover. The chosen subjects are Computer, Movie, Location,

and People.

As follows:

• Computer

• Film

• People

• Location

The below table describe the statistics of the selected relations and triplets:
61Look for entityWords.txt file.

https://github.com/xrb92/DKRL
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Table 20: stats of the filtered FB15K datasets

Domain # of relations # of Triplets
computer 4 69

film 12 37394
people 10 30047

location 8 12588
TOTOAL 34 80098

In the following figures, we describe the graph ontology of each domain. We also provided sample

questions for each domain.

Figure 41: Computer ontology graph

Computer-domain sample questions:

• What languages were influenced by Java?

• What the software license of Linux OS?

Film-domain sample questions:

• Who directed The Matrix Movie?

• What movies were written by James Cameron?

People-domain sample questions:

• What language do people speak in Saudi Arabia?

• Where was Gandhi born?

Location-domain sample questions:

• What currency is used in Germany?
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Figure 42: Film ontology graph

Figure 43: People ontology graph

Figure 44: Location ontology graph
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• What is the capital city of Australia?

Finally, here is the complete ontology of all the four domains together.

Figure 45: Complete ontology graph of our QA system

Extracting the relevant triplets from FB15K

Then, in order to specify the space of the type of questions that the factoid Q/A system accepts, we

describe the domain ontology of the chosen domains.

In order to highlight the space (domain/range) of the questions, we provide an ontological description

for the filtered dataset (domain knowledge).

Table 21: stats of the filtered relationships in FB15K

filtering term total avail. relations selected relations
/computer/ 24 4
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filtering term total avail. relations selected relations
/film/ 95 12

/people/ 47 10
/location/ 63 8

Below is the complete list of the selected relations from each domain:
computer = [

# FB15 total relations: 24
# KEYWORD: /computer/
'/computer/operating_system/parent_os', # 10
'/computer/programming_language/influenced', # 26
'/computer/programming_language/influenced_by', # 25
'/computer/software/license', # 8

]
film = [

# FB15 total relations: 95
# KEYWORD: /film/
'/film/film/starring./film/performance/actor', # 9466
'/film/actor/film./film/performance/film', # 9494
'/film/film/starring./film/performance/character', # 64
'/film/film/language', # 2570
'/film/film/country', # 2407
'/film/film/genre', # 7268
'/film/production_company/films', # 1537
'/film/writer/film', # 807
'/film/film/produced_by', # 1285
'/film/film/directed_by', # 850
'/film/director/film', # 859
'/film/film/written_by', # 787

]
people = [

# FB15 total relations: 47
# KEYWORD: /people/
'/people/person/ethnicity', # 2030 person -> ethnicity
'/people/ethnicity/people', # 2073 ethnicity -> person
'/people/person/profession', # 11636
'/people/person/place_of_birth', # 2468
'/people/deceased_person/place_of_death', # 697
'/people/person/education./education/education/institution', # 2591
'/people/person/nationality', # 4198
'/location/location/people_born_here', # 2485
'/people/person/languages', # 783
'/people/person/religion', # 1086

]
location = [

# FB15 total relations: 63
# KEYWORD: /location/
'/location/location/containedby', # 5186
'/location/location/contains', # 5204
'/location/country/capital', # 142
'/location/location/time_zones', # 1151
'/location/country/languages_spoken', # 334
'/location/country/official_language', # 225
'/location/country/form_of_government', # 298
'/location/country/currency_used', # 48

]
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5.3.5.2 Visualizing Entities and Relations

As an additional feature, KGE QA system provides visualizations capability to display a graph of the

closest Entities and/or Relations (from our ENT.vec/REL.vec models) to any word entered into the

system. Since the embedding models are high-dimensional data, we used an external tool (t-SNE)

to reduce the dimensionality of the vectors62.

See an example in the figure below.

Figure 46: Visualizing the closest 20 relations in our REL.vec to the word “wrote”

62See: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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5.4 System setup and project configurations

System requirements

• Python3.6+

• pymagnitude==0.1.120

• streamlit==0.45.0

• pandas==0.25.3

Setup

First, let’s check out the source code from its git repository, create a virtual environment, and install

the dependencies:
$ git clone https://github.com/iamaziz/kge_qa
$ cd kge_qa
$ virtualenv .env -p python3.7
$ source .env/bin/activate
(.env) $ pip install -r requirements.txt

Getting Started

The KGE QA system can be used either in the command-line mode or in a web browser. Open a

terminal window to get started.

To run in command line mode, type:
(.env) $ python -m kgeqa.main
enter your question >>

Or to in the browser mode (requires streamlit), type:
(.env) $ streamlit run app.py
# go to: http://localhost:8501/ (see the screenshot below)

Figure 47: localhost:8501 to get started in the browser
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6 Conclusion

In this dissertation, we have introduced a new approach for building a representation model for

knowledge graphs. Our method embed the knowledge graph into a low-dimensional vector space.

This meaningful representation is essential for using knowledge graphs efficiently in various AI appli-

cations such as dialog systems. The presented approach is inspired by a combination of existing and

successful techniques in natural language processing, machine learning, and relational knowledge

representation.
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